DISCRETE SEMICONDUCTORS

Semiconductor Sensors

Philips Components

PHILIPS

SEMICONDUCTOR SENSORS

						page
Selection guide						7-9-
Magnetic field sensors			 	 		5
Pressure sensors						
Temperature sensors						
Inductive proximity dete						
Type number survey (alpha	-numerical)	• • • • • •	 • • •	 	•	9
General						
Introduction to magnetic	c-field sensors.		 :	 		12
Introduction to tempera Introduction to pressure	ture sensors		 	 		30
Device data in alpha-numer						33
Magnetic field sensors						
Pressure sensors						
Temperature sensors						
Inductive proximity dete Pyroelectric infrared sen						
Index of all devices in semi						

SELECTION GUIDE

Magnetic field sensors

type	field range kA/m	supply voltage V	oC T _{amb}	sensitivity MV/V kA/m	bridge resistance kΩ*	integrated temperature compensation	page
KMZ10A	-0.5 to + 0.5	5	-40 to 150	14	1.7 ± 0.5		47
KMZ10B	-2.0 to + 2.0	5	-40 to 150	4	1.7 ± 0.5		51
KMZ10C	-7.5 to + 7.5	5	-40 to 150	1.5	1.4 ± 0.4	l Mari	55

Note: In air, 1 kA/m corresponds to approximately 12.5 G or to 1.25 mT.

Pressure sensors

type	pressure range bar note 1	supply voltage V	T _{amb}	sensitivity (T _{amb} = 25 ^o C) mV/Vbar	bridge resistance kΩ*		page
KP100A KP100A1 KP101A KPZ20G KPZ21G	+ 1 to 2 ((abs.) 0 to 2 (abs.) 0 to 1.2 (abs.) -1 to 2 (rel.) -1 to 10 (rel.)	7.5 5 5 7.5 7.5	-40 to 105 -40 to 125 -40 to 125 -40 to 125 -40 to 125	13 200 50 10.5 ± 3.5 3.5 ± 3.5	1.8 ± 0.4 1.8 ± 0.4 1.6 ± 0.4 2.0 ± 1.0 2.0 ± 1.0	Y Y Y N	61 61 65 69 73
KPZ21GE	-1 to 10 (rel.)	4.75 to 7.0	-40 to 120	500	N/A note 2	Υ	77

Notes

- 1. 1 bar corresponds to 100 kPa and to 14.5 PSI.
- 2. Integrated signal processing; R $_{L}$ = 5 $k\Omega$ min.

Temperature sensors

type	temperature range °C	resistance R at $^{-}$	r _{amb}	sensor ac at T _a °C		sensor current mA	page
KTY81-110 KTY81-120(1) KTY81-121 KTY81-122 KTY81-150(2) KTY81-151 KTY81-152	-55 to 150 -55 to 150 -55 to 150 -55 to 150 -55 to 150 -55 to 150 -55 to 150	990 to 1010 980 to 1020 980 to 1000 1000 to 1020 950 to 1050 950 to 1000 1000 to 1050	25 25 25 25 25 25 25 25 25	± 1.3 ± 2.5 ± 1.3 ± 1.3 ± 6.3 ± 3.2 ± 6.3	25 25 25 25 25 25 25 25	1 1 1 1 1 1	103 103 103 103 103 103 103
KTY81-210 KTY81-220(1) KTY81-221 KTY81-222 KTY81-250(2) KTY81-251 KTY81-252	-55 to 150 -55 to 150 -55 to 150 -55 to 150 -55 to 150 -55 to 150	1980 to 2020 1960 to 2040 1960 to 2000 2000 to 2040 1900 to 2100 1900 to 2000 2000 to 2100	25 25 25 25 25 25 25 25 25	± 1.3 ± 2.5 ± 1.3 ± 1.3 ± 6.3 ± 2.5 ± 2.5	25 25 25 25 25 25 25 25 25	1 1 1 1 1 1	107 107 107 107 107 107 107

SELECTION GUIDE

Temperature sensors

type	temperature range	resistance R at T _{amb}		sensor accuracy at T _{amb}		sensor current	page
	°Č	Ω	°C	°c °	oc	mA	
KTY83-110	-55 to 175	990 to 1010	25	± 1.3	25	1	1,11
KTY83-120(1)	-55 to 175	980 to 1020	25	± 2.6	25	1	111
KTY83-121	-55 to 175	980 to 1000	25	± 1.3	25	1	111
KTY83-122	-55 to 175	1000 to 1020	25	± 1.3	25	1	111
KTY83-150(2)	-55 to 175	950 to 1050	25	± 6.6	25	1	111
KTY83-151	-55 to 175	950 to 1000	25	± 3.3	25	1	111
KTY83-152	-55 to 175	1000 to 1050	25	± 3.3	25	1	111
KTY84-130	0 to 300	970 to 1030	100	± 4.9	100	2	115
KTY84-150(2)	0 to 300	950 to 1050	100	± 8.2	100	2	115
KTY84-151	0 to 300	950 to 1000	100	± 4.1	100	2	115
KTY84-152	0 to 300	1000 to 1050	100	± 4.1	100	2	115
KTY85-110	-40 to 125	990 to 1010	25	± 1.3	25	1	119
KTY85-120(1)	-40 to 125	980 to 1020	25	± 2.6	25	1	119
KTY85-121	-40 to 125	980 to 1000	25	± 1.3	25	1	119
KTY85-122	-40 to 125	1000 to 1020	25	± 1.3	25	1	119
KTY85-150(2)	-40 to 125	950 to 1050	25	± 6.6	25	1	119
KTY85-151	-40 to 125	950 to 1000	25	± 3.3	25	1	119
KTY85-152	-40 to 125	1000 to 1050	25	± 3.3	25	1	119
KTY86-205	-40 to 150	1990 to 2010	25	± 1.3	25	1	125
KTY87-205	-40 to 125	1990 to 2010	25	± 0.7	25	0.1	131
KTY87-205	-40 to 125	3327 to 3361	100	± 0.8	100	_	131

Notes

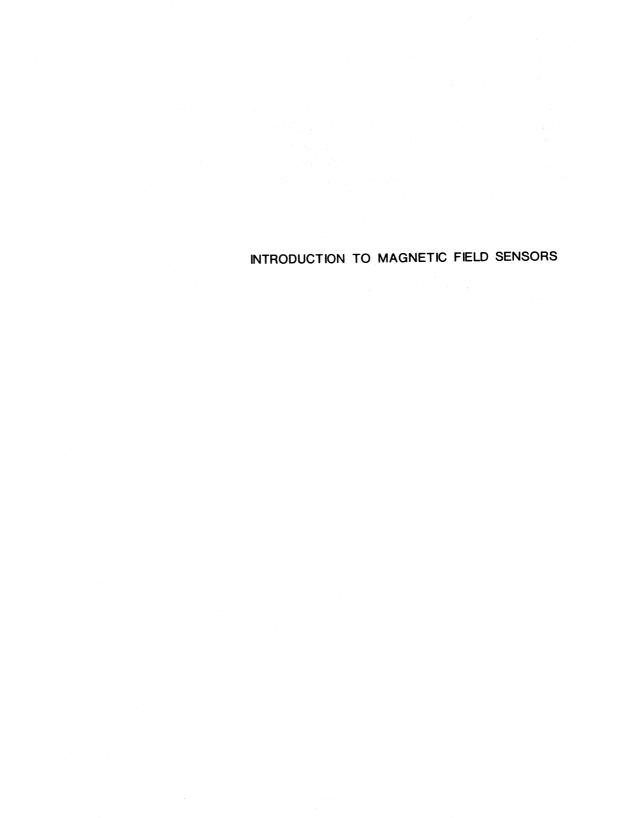
- 1. Contains the groups -21 and -22 which are marked accordingly.
- 2. Contains the groups -51 and -22 which are marked accordingly.

Proximity detectors

type	switching	supply	max. output		T _{amb}	page
	distance	voltage	current	l at VB		
:	mm	V	mA	V	оС	
OM286; M	1 to 5	4,5 to 30	250	24	-40 to 85	139
OM287; M	1 to 5	-4,5 to -30	250	-24	-40 to 85	139
OM386B	1 to 5	10 to 30	250	10 to 30	-40 to 85	145
OM387B	1 to 5	-10 to -30	250	−10 to −30	-40 to 85	145
OM386M	1 to 5	10 to 30	200	10 to 30	-40 to 85	151
OM387M	1 to 5	-10 to -30	200	−10 to −30	-40 to 85	151
OM388B	2 to 5	10 to 30	250	10 to 30	-40 to 85	157
ОМ389В	2 to 5	-10 to -30	250	−10 to −30	-40 to 85	157
OM390	2 to 5	10 to 30	250	10 to 30	-40 to 85	163
OM391	2 to 5	-10 to -30	250	−10 to −30	-40 to 85	163

TYPE NUMBER SURVEY

TYPE NUMBER SURVEY


In this survey we give an alphanumeric list of all devices contained in this book.

		page
KGZ10	Oxystor	91
KGZ20/21	Oxygen probe assembly	83
KMZ10A	Magnetic field sensor, -0.5 to +0.5 kA/m	47
KMZ10B	Magnetic field sensor, -2.0 to +2.0 kA/m	51
KMZ10C	Magnetic field sensor, -7.5 to +7.5 kA/m	55
KP100A	Pressure sensor, 0 to 2 bar	61
KP100A1	Pressure sensor, 0 to 2 bar	61
KP101A	Pressure sensor, 0 to 1.2 bar	65
KPZ20G	Pressure sensor, -1 to +2 bar	69
KPZ21G	Pressure sensor, -2 to +10 bar	73
KPZ21GE	Pressure sensor, -1 to +10 bar	77
KRX10	Dual element pyroelectric infrared sensor	197
KRX11	Dual element pyroelectric infrared sensor	203
KTY81-110	Temperature sensor, -55 to +150 °C	103
KTY81-120	Temperature sensor, –55 to +150 °C	103
KTY81-121	Temperature sensor, –55 to +150 °C	103
KTY81-122	Temperature sensor, –55 to +150 °C	103
KTY81-150	Temperature sensor, –55 to +150 °C	103
KTY81-151	Temperature sensor, –55 to +150 °C	103
KTY81-152	Temperature sensor, —55 to +150 °C	103
KTY81-210	Temperature sensor, —55 to +150 °C Temperature sensor, —55 to +150 °C	
KTY81-210	Temperature sensor, —55 to +150 °C Temperature sensor, —55 to +150 °C	107
KTY81-220		107
	Temperature sensor, –55 to +150 °C	107
KTY81-222	Temperature sensor, -55 to +150 °C	107
KTY81-250	Temperature sensor, -55 to +150 °C	107
KTY81-251	Temperature sensor, -55 to +150 °C	107
KTY81-252	Temperature sensor, -55 to +150 °C	107
KTY83-110	Temperature sensor, -55 to +175 °C	111
KTY83-120	Temperature sensor, –55 to +175 °C	111
KTY83-121	Temperature sensor, –55 to +175 °C	111
KTY83-122	Temperature sensor, -55 to +175 °C	111
KTY83-150	Temperature sensor, -55 to +175 °C	111
KTY83-151	Temperature sensor, –55 to +175 °C	111
KTY83-152	Temperature sensor, –55 to +175 ^O C	111
KTY84-130	Temperature sensor, 0 to 300 °C	115
KTY84-150	Temperature sensor, 0 to 300 °C	115
KTY84-151	Temperature sensor, 0 to 300 °C	115
KTY84-152	Temperature sensor, 0 to 300 °C	115
KTY85-110	Temperature sensor, -40 to +125 °C	119
KTY85-120	Temperature sensor, -40 to +125 °C	119
KTY85-121	Temperature sensor, -40 to +125 °C	119
KTY85-122	Temperature sensor, -40 to +125 °C	119
KTY85-150	Temperature sensor, -40 to +125 °C	119
KTY85-151	Temperature sensor, -40 to +125 °C	119
KTY85-152	Temperature sensor, -40 to +125 °C	119
KTY86-205	Temperature sensor, —40 to +150 °C	125
KTY87-205	Temperature sensor, —40 to +125 °C	131
	The state of the s	151

TYPE NUMBER SURVEY

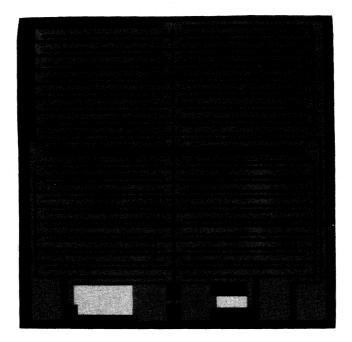
Type Number Survey (continued)

		page
OM286;M	proximity detector, 250 mA	139
OM287;M	same as OM276;M but with reverse polarity	139
OM386B	proximity detector, 250 mA	145
OM387B	same as OM386B but with reverse polarity	145
OM386M	proximity detector, 250 mA	151
OM387M	same as OM386M but with reverse polarity	151
OM388B	proximity detector, 250 mA	157
OM389B	same as OM388B but with reverse polarity	157
OM390	proximity detector, 250 mA	163
OM391	same as OM390, but with reverse polarity	163
P2105	Single element pyroelectric IR sensor, 90 V/W, SOT49G	209
RPW100	Dual element pyroelectric IR sensor, TO-39	215
RPW101	Dual element pyroelectric IR sensor, SOT49M	221
RPW102	Dual element pyroelectric IR sensor, TO-39	227
RPY100	Single element pyroelectric IR sensor, 150 V/W TO-39	223
RPY102	Single element pyroelectric IR sensor, 75 V/W TO-39	241
RPY107	Single element pyroelectric IR sensor, 130 V/W TO-39	249
RPY109	Single element pyroelectric IR sensor, 65 V/W TO-39	257
RPY222	Two channel pyroelectric IR sensor SOT49N	265

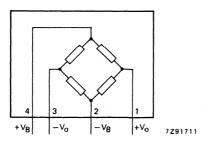
MAGNETIC FIELD SENSORS

The KMZ10 is a highly-sensitive magnetic-field sensor and provides an excellent means of measuring both linear and angular displacement. This is because even quite small movement of actuating components in machinery (metal rods, cogs, cams etc.) can create measurable changes in magnetic field. Examples where this property is put to good effect can be found in instrumentation and control equipment, which often requires position sensors capable of detecting displacements in the region of tenths of a millimetre, and in electronic ignition systems, which must be able to determine the angular position of an internal-combustion engine with great accuracy.

If the KMZ10 is to be used to maximum advantage, however, it's important to have a clear understanding of its operating principles and characteristics, and of how its behaviour may be affected by external influences and by its magnetic history.


KMZ10 MAGNETIC FIELD SENSORS

	KMZ10A	KMZ10B	KMZ10C	units
H _{max} (typ)	500	2000	7,500	A/m
open-circuit sensitivity	12,0	5,0	1,1	(mV/V)/(kA/M)


KMZ10 OPERATING PRINCIPLES

The KMZ10 makes use of the *magnetoresistive effect*, the well known property of a current-carrying magnetic material to change its resistivity in the presence of an external magnetic field. This change is brought about by rotation of the magnetization relative to the current direction. In the case of permalloy for example (a ferromagnetic alloy containing 20% iron and 80% nickel), a 90° rotation of the magnetization (due to the application of a magnetic field normal to the current direction) will produce a 2 to 3% change in resistivity.

In the KMZ10, four permalloy strips, are arranged in a meander pattern on a silicon substrate (Fig.1), and connected to form the four arms of a Wheatstone bridge. The degree of bridge imbalance is then used to indicate the magnetic field strength, or more precisely, the variation in magnetic field in the plane of the permalloy strips normal to the direction of current.

(a)

(b)

- Fig.1 (a) The KMZ10 chip is made up of four permalloy strips arranged in a meander pattern and connected to form the four arms of a Wheatstone bridge. The chip incorporates special resistors that are trimmed during manufacture to give zero offset at 25°C.
 - (b) Bridge configuration of the KMZ10. V_B supply voltage, V_O output voltage

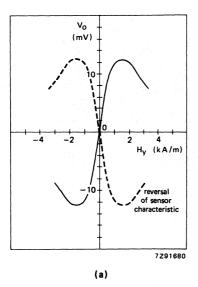
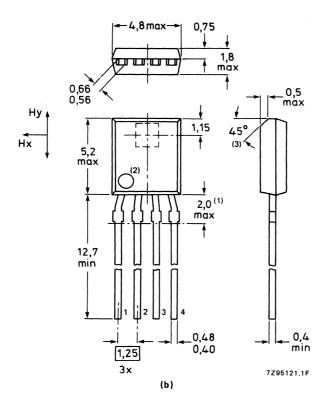



Fig.2

- (a) Sensor characteristic. The unbroken line shows the characteristics of a 'normal' sensor (with the magnetization oriented in the +x direction), and the broken line shows the characteristic of a 'flipped' sensor.
- (b) Dimensional drawing of the KMZ10 showing pinning and magnetic field direction for normal operation

KMZ10 CHARACTERISTIC BEHAVIOUR

During manufacture, a strong magnetic field is applied parallel to the strip axis. This imparts a preferred magnetization direction to the permalloy strips. So even in the absence of an external magnetic field, the magnetization will always tend to align with the strips.

The internal magnetization of the sensor strips therefore has two stable positions, so that if for any reason, the sensor should come under the influence of a powerful magnetic field opposing the internal aligning field, the magnetization may flip from one position to the other, and the strips become magnetized in the opposite direction (from say the +x to the -x direction). As Fig.2 shows, this can lead to drastic changes in sensor characteristics.

In Fig.2 the unbroken line shows the characteristics of a normal sensor (i.e. with the sensor magnetization oriented in the +x direction), and the broken line shows the characteristics of a 'flipped' sensor.

The field, \hat{H}_{-X} say, needed to flip the sensor magnetization (and hence the characteristic) depends on the magnitude of the transverse field H_{y} — the greater the field H_{y} , the smaller the field \hat{H}_{-X} . This is quite reasonable when you think of it, since the greater the field H_{y} , the closer the magnetization's rotation approaches 90° , and hence the easier it will be to flip it into a corresponding stable position in the -x direction.

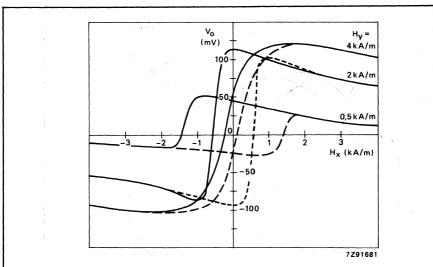
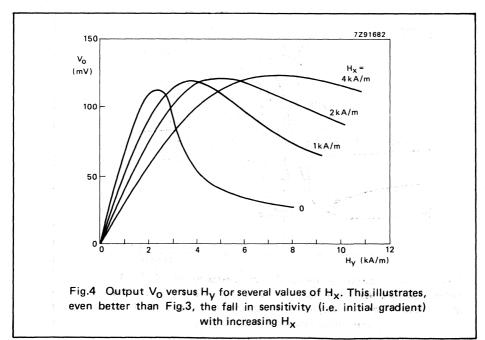


Fig.3 Sensor output V_0 versus H_X for several values of H_Y . The curves illustrate several things: first, that the sensor exhibits hysteresis, second, that the flipping is not instantaneous, and third, that sensitivity falls with increasing H_X


This is illustrated in Fig.3, which shows sensor output signal V_0 versus H_X for several values of H_V .

Take the curve for $H_y = 0.5 \, \text{kA/m}$. For such a low transverse field, the sensor characteristic is stable for all positive values of H_X , and a reverse field of around 1 kA/m is required before flipping occurs. At $H_y = 4 \, \text{kA/m}$, on the other hand, the sensor will flip at even positive values of H_X (at around 1 kA/m).

Figure 3 also illustrates that the flipping itself is not instantaneous; this is because not all the permalloy strips flip at the same rate. Also in Fig.3 you can see the hysteresis effect exhibited by the sensor. Finally, Fig.3 and Fig.4 show that the sensitivity of the sensor falls with increasing $H_{\rm X}$. This again is reasonable since the moment imposed on the magnetization by $H_{\rm X}$ directly opposes that imposed by $H_{\rm Y}$, thereby reducing the degree of bridge imbalance and hence the output signal for a given value of $H_{\rm Y}$.

From the foregoing discussions we arrive at the following general recommendations for operating the KMZ10:

 to assure stable operation, avoid operating the sensor in an environment where it's likely to be subjected to negative external fields H_{-X}. Preferably, apply a positive auxiliary field H_X of sufficient magnitude to prevent any likelihood of flipping within the operating range (i.e. the range of H_y) you intend to use the sensor

- use the minimum auxiliary field that will assure stable operation. Remember, the larger the auxiliary field, the lower the sensitivity. For the KMZ10B sensor, we recommend a minimum auxiliary field of around 1 kA/m
- and finally, before using the sensor for the first time, apply a positive auxiliary field of at least 3kA/m. This will effectively erase the sensor's history and will ensure that no residual hysteresis remains (see Fig.3). Note: to guarantee stable operation, you should, in fact, operate the sensor in an auxiliary field of 3kA/m (the value we recommend in our data sheets).

These recommendations (particularly the first one) define a kind of SOAR for the sensors. This can be seen from Fig.5, which is an example (for the KMZ10B sensor) of the SOAR graphs you'll find in our data sheets. The graph shows the SOAR of a KMZ10 as a function of auxiliary field $H_{\rm X}$ and of disturbing field $H_{\rm d}$ opposing $H_{\rm X}$. The greater the auxiliary field, the greater the disturbing field that can be tolerated before flipping occurs. For auxiliary fields above $3\,{\rm kA/m}$, the SOAR graph shows that the sensor is completely stable regardless of the magnitude of the disturbing field. You can also see from Fig.5 that the SOAR can be extended for low values of $H_{\rm Y}$. In this graph (for the KMZ10B sensor) we've shown the extension in SOAR for $H_{\rm Y} < 1\,{\rm kA/m}$.

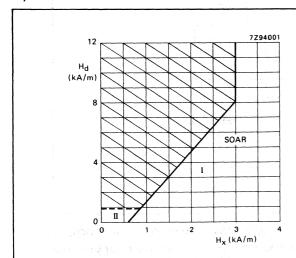


Fig.5 SOAR of a KMZ10B sensor as a function of auxiliary field H_X and of disturbing field H_d opposing H_X (area I). The SOAR can be extended slightly (area II) for values of $H_V < 1 \text{ kA/m}$

Effect of temperature on behaviour

Figure 6 shows that the bridge resistance increases linearly with temperature. This variation comes, of course, from the fact that the bridge resistors themselves (i.e. the permalloy strips) vary with temperature, and as we see below, it can be put to good effect when operating with a constant-current supply. Figure 6 shows only the variation for a typical KMZ10B sensor. The data sheets show also the spread in this variation due to manufacturing tolerances, and this should be taken into account when incorporating the sensor into practical circuits.

Not just the bridge resistance but the sensitivity too varies with temperature. This can be seen from Fig.7 which plots output voltage against transverse field H_y for various temperatures. The figures shows that sensitivity falls with increasing temperature. The reason for this is rather complicated and is connected with the energy-band structure of the permalloy strips.

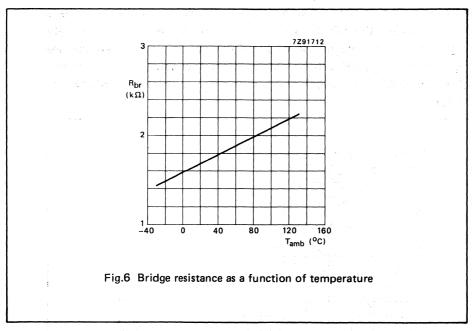


Figure 8 is similar to Fig.7 but with the sensor powered by a constant-current supply. The figure shows that with a constant current supply, the temperature dependence of sensitivity is significantly reduced. This is a direct result of the increase of bridge resistance with temperature (Fig.5) which partially compensates the fall in sensitivity by increasing the voltage across the bridge and hence the output voltage. The figure, therefore, adequately demonstrates the advantages of operating with constant current.

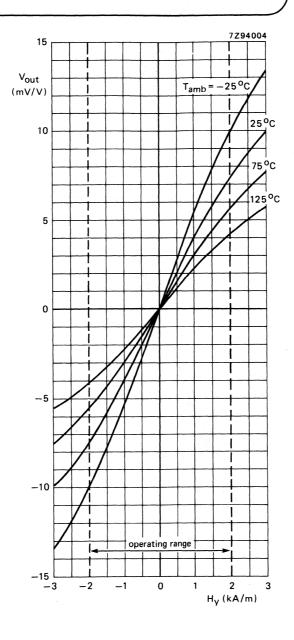


Fig.7 Output voltage V_0 (as a fraction of the supply voltage) versus transverse field H_{γ} for several temperatures. The figure illustrates that sensitivity falls with increasing temperature

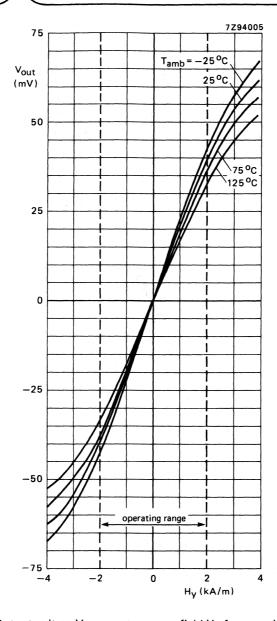


Fig.8 Output voltage V_0 versus transverse field H_V for several temperatures, with the sensor powered by a constant-current supply. The reduction in temperature dependence of sensitivity is a result of the increase of bridge resistance with temperature, which increases the bridge voltage to partially compensate the fall in sensitivity

USING THE KMZ10

Displacement measurement using permanent magnets

Figures 9 and 10 show probably one of the simplest arrangements for using a sensor/permanent-magnet combination to measure linear displacement, and exposes some of the problems likely to be encountered if proper account is not taken of the effects described above.

When the sensor is placed in the field of a permanent magnet, it's exposed to magnetic fields in both the x and y directions. If the magnet is oriented with its axis parallel to the sensor strips (i.e. in the x direction) as shown in Fig.9(a), H_X then provides the auxiliary field and the variation in H_Y can be used as a measure of x displacement. Figure 9(b) shows how both H_X and H_Y vary with x, and Fig.9(c) shows the corresponding output signal as a function of x.

In the example shown in Fig.9, H_X never exceeds $\pm \hat{H}_X$ (the field that can cause flipping of the sensor) and the sensor characteristic remains stable and well-behaved throughout the measuring range.

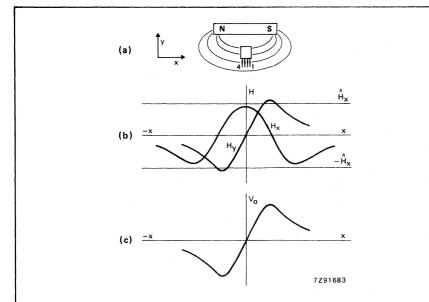
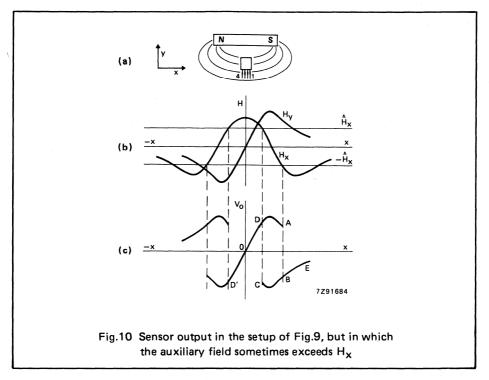
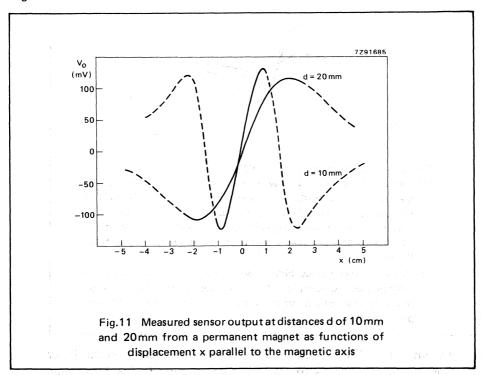



Fig.9 Sensor output in the field of a permanent magnet as a function of its displacement x parallel to the magnetic axis. The magnet provides both the auxiliary and transverse fields. In the example shown, the auxiliary field is always less than the field \hat{H}_X that will cause flipping. Note the pinning arrangement in this figure, which indicates that the sensor is viewed from the rear. Reversal of the sensor relative to the permanent will reverse the characteristic


Consider now the example shown in Fig.10. Here for certain values of x, H_X exceeds $\pm \hat{H}_X$, (Fig.10(b)). This could happen if, for example, the magnet were powerful or if the sensor should pass close to the magnet, and as Fig.10(c) shows, the effects on the output signal can be drastic.

Suppose the sensor is initially on the transverse axis of the magnet (x = 0 say). H_Y will be zero and H_X will be at its maximum value ($>\hat{H}_X$). So the sensor will be oriented in the +x direction and the output voltage will vary as in Fig.9(a). As the sensor moves in the +x direction H_Y and hence V_O increases, and H_X falls to zero and then increase negatively until it exceeds $-\hat{H}_X$. At this point the sensor characteristic flips and the output voltage reverses, moving from A to B in Fig.10(c). Further increase of x causes the sensor voltage to move along BE. If the sensor is moved in the opposite direction, however, H_X increases until it exceeds $+\hat{H}_X$ and V_O moves from B to C. At this point the sensor characteristic again flips and V_O moves from C to D.

Under these conditions, then, the sensor characteristic will trace the hysteresis loop ABCD, and a similar loop in the -x direction. Figure 10(c) is, in fact, an idealized case and the reversals are never as abrupt as shown in this figure. It does, however, illustrate the effects that can occur if the sensor is placed close to a powerful permanent magnet. Note that under certain

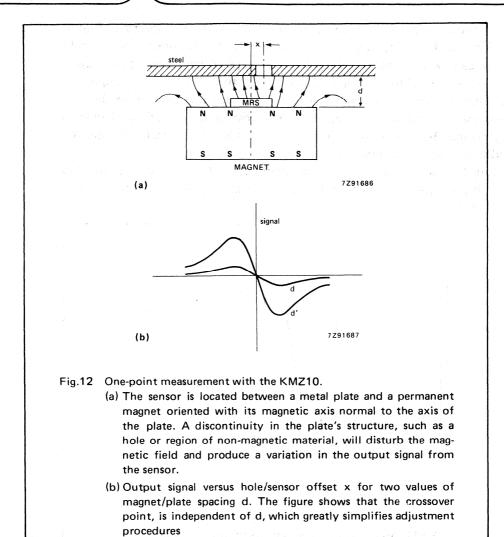
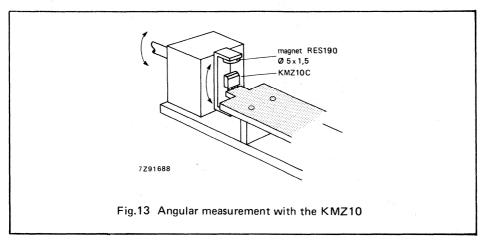

circumstances, particularly where there are likely to be temporary of fluctuating external fields, it may be advantageous to operate under these conditions, since over the region DD' the field of the permanent magnet will have a stabilizing effect on the sensor (i.e. it will tend to correct any flipping of the sensor due to transient magnetic fields). Note also that reversal of the permanent magnet will give rise to the same sensor characteristic as shown in Figs.9(c) and 10(c) (i.e. with positive slope) since the sensor will then be forced to operate in its flipped state.

Figure 11 shows the sensor characteristic at distances of 10 mm and 20 mm from a permanent magnet, and amply illustrates the effects show in Figs.9 and 10.

One-point position measurement with the KZM10


Figure 12(a) shows how a KMZ10B may be used to make position measurements of a metal object, a steel plate for instance. The sensor is located between the plate and a permanent magnet oriented with its magnetic axis normal to the axis of the plate. A discontinuity in the plate's structure, such as a hole or region of non-magnetic material, will disturb the magnetic field and produce a variation in the output signal from the sensor.

This is shown in Fig.12(b) which gives the sensor output signal versus hole/sensor offset x, for two values of magnet/plate spacing d. The interesting point of this figure is that the crossover point, i.e., the point where the hole and sensor precisely coincide, is independent of d. The obvious advantage of this setup is that precise location of the sensor/magnet combination is unimportant for one-point position measurements, so adjustment procedures in a practical device would be greatly simplified. Although not shown in Fig.12(b), the crossover point is also independent of temperature. This is not surprising since it is effectively a null measurement, and it could be a major advantage in practical applications.

Angular position measurement with the KMZ10

Figure 13 shows a practical setup for measuring angular position using a KMZ10C. The sensor itself is located in the magnetic field produced by two RES190 permanent magnets fixed to a rotable frame. The output of the sensor will then be a measure of the rotation of the frame (Fig.15). Taking the zero position for measurement to be parallel to the x axis of the sensor (i.e. with the magnetic field in the H_X direction), then the device can measure rotation up to around $\pm 85^\circ$. Beyond that and the sensor is in danger of flipping.

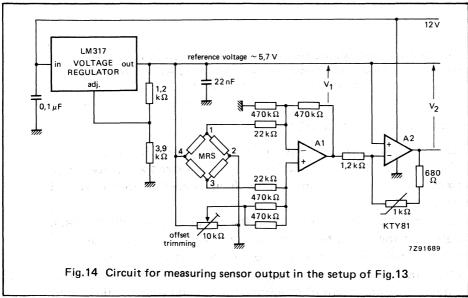


Figure 14 shows a circuit for measuring the sensor output in the setup of Fig.13. The output signal of the sensor bridge is amplified by opamps A₁ and A₂. A KTY81 silicon temperature sensor in the feedback loop of A₂ varies the gain of the amp to provide temperature compensation for the output signal. Fig.15 shows the effectiveness of this temperature compensation by comparing the output V₂ of A₂ with the direct output V₁ from opamp A₁ for a range of temperatures.

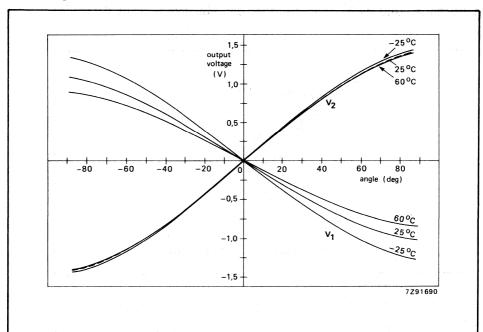


Fig.15 Effect of temperature compensation in the circuit of Fig.14. The figure compares the uncompensated output V_1 of opamp A_1 with the compensated output V_2 of opamp A_2

Current measurement with the KMZ10

Finally Figs.16 and 17 show two ways in which the KMZ10B can be used to measure electric current. This could be useful, for example, in headlamp-failure systems in automobiles or in clamp-on (non-contacting) meters as used in the power industry.

Fig.16 is a rather simple setup in which the sensor measures the magnetic field generated by the current-carrying wire. Fig.17 is a more sophisticated arrangement in which the current-carrying wire is wrapped around a ferrite core, with the sensor located in the air gap between its ends. This arrangement provides a more accurate means of measuring current and lends itself more to

precision applications. What's important to bear in mind in both these examples, however, is that they allow current measurement without any break in or interference with the circuit — and thereby they provide a distinct advantage over thermistor-based systems.

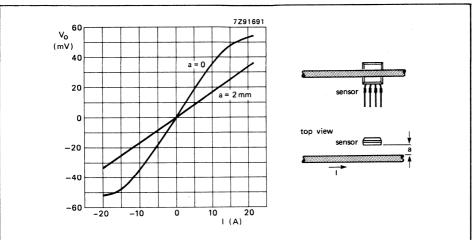


Fig.16 Simple setup for measuring current with a KMZ10 sensor. The sensor simply measures the magnetic field generated by a current-carrying wire

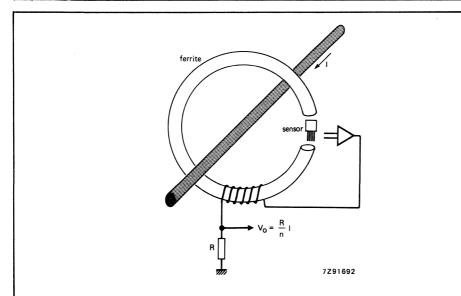


Fig.17 Current measurement with the KMZ10 sensor. In this setup a currentcarrying wire is wrapped around a ferrite core, with the sensor located in the air gap between its ends

SILICON TEMPERATURE SENSORS

General

With their high accuracy and reliability, the KTY81/83/84 silicon temperature sensors provide an attractive alternative to more conventional sensors using NTC or PTC thermistors.

They use n-type silicon with a doping level between 10^{14} and $10^{15}/\text{cm}^3$, providing a nominal resistance of about $1000~\Omega$. Note, however, that variants of the KTY81 series exist, the KTY81-210 and KTY81-220, with a nominal resistance of $2000~\Omega$.

QUICK REFERENCE DATA

GOICK HELL	TENCE DATA	
KTY81-110 KTY81-120	$R_{25} = 1000 \Omega \pm 1\%$ $R_{25} = 1000 \Omega \pm 2\%$	SOD-70
KTY81-210 KTY81-220	$R_{25} = 2000 \Omega \pm 1\%$ $R_{25} = 2000 \Omega \pm 2\%$	encapsulation
KTY83-110 KTY83-120	$R_{25} = 1000 \Omega \pm 1\%$ $R_{25} = 1000 \Omega \pm 2\%$	DO-34 encapsulation
KTY84-130 KTY84-150	R_{100} = 1000 $\Omega \pm 3\%$ R_{100} = 1000 $\Omega \pm 5\%$	DO-34 encapsulation
KTY85-110 KTY85-120 KTY85-150	$R_{25} = 1000 \Omega \pm 1\%$ $R_{25} = 1000 \Omega \pm 2\%$ $R_{25} = 1000 \Omega \pm 5\%$	SOD-80 encapsulation
KTY86-205 KTY87-205	$\begin{array}{l} \text{R}_{25} = 2000 \; \Omega \; \pm 0.5\% \\ \text{R}_{25} = 2000 \; \Omega \; \pm 0.5\% \\ \text{R}_{100} = 3344 \; \Omega \; \pm 0.5 \end{array}$	encapsulation

Resistance-temperature characteristics — manufacturing tolerances

Silicon temperature sensors are normally produced to quite fine tolerances: ΔR between $\pm\,1\%$ and $\pm\,2\%$ (see quick reference data). Figure 1 illustrates how these tolerances are specified for the KTY81 and KTY83 sensors. The tolerance on resistance quoted in our data sheets is given by the resistance spread ΔR measured at 25 °C.

Because of spread in the slope of the resistance-temperature characteristic, ΔR will increase each side of the 25 °C point to produce the butterfly curve shown in Fig. 1. To give an indication of this spread in slope, we also quote the ratio of resistance at two other temperatures (–55 °C and 100 °C) to the nominal resistance at 25 °C, i.e. R_{-55}/R_{25} , and R_{100}/R_{25} .

The user, however, is usually more interested in the temperature spread $\pm\,\Delta T$ (standard deviation). So we also provide this in the data sheets as a graph of ΔT versus T.

ESD SENSITIVITY

Electro static discharges may lead to changes in resistance value of the KTY sensors and in extreme cases even to destruction. Circuitry should be so designed that the sensor element is not exposed to voltage pulses > 300 V or to energy pulses > 20 x 10⁻⁶ W.

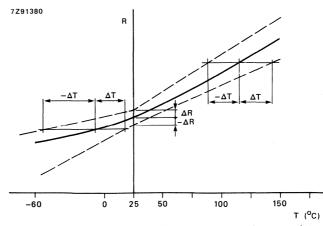


Fig.1 Resistance and temperature tolerances of the KTY81 and KTY83 sensors (exaggerated for clarity).

For the high-temperature KTY84, we specify the resistance spread at 100 °C. This is, however, an extrapolation from the measured spread at 25 °C.

Resistance-temperature characteristics — linearization

The resistance-temperature characteristics of the KTY81 and KTY83 temperature sensors are non linear, and in some applications, e.g. control systems requiring high accuracy, linearization becomes necessary.

A simple way to do this is to shunt the sensor (resistance R_T) with a fixed resistor R (Fig. 2). The resistance $RR_T/(R+R_T)$ of the parallel combination then effectively becomes a linear function of temperature, and the output voltage V_T of the linearizing circuit can be used to regulate the control system.

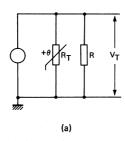
If the circuit is powered by a constant-voltage source, a resistor can be connected in series with the sensor, the voltages across the sensor and across the resistor will then again be approximately linear functions of temperature.

The value of the series or parallel resistor depends on the required operating-temperature range of the sensor. A method for finding this resistance is described here that gives zero temperature error at three equidistant points T_a , T_b and T_c say.

Consider the parallel arrangement. If the resistance of the sensor at the three points is $\rm R_a$, $\rm R_b$ and $\rm R_c$, and the corresponding resistance of the parallel arrangement $\rm R_{pa}$, $\rm R_{pb}$ and $\rm R_{pc}$, the requirement for linearity at the three points is

$$R_{pa} - R_{pb} = R_{pb} - R_{pc}$$

i.e.


$$\frac{RR_a}{R+R_a} - \frac{RR_b}{R+R_b} = \frac{RR_b}{R+R_b} - \frac{RR_c}{R+R_c}$$

So

$$R = \frac{R_b (R_a + R_c) - 2R_a R_c}{R_a + R_c - 2R_b}$$
 (2)

The same resistor turns out to be suitable for the series arrangement as well.

As an example, Fig. 3 shows the deviation from linearity to be expected from a nominal KTY81 sensor linearized over the temperature range 0 to $100~^{\circ}$ C with a linearizing resistance of 2870 Ω .

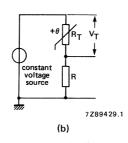


Fig.2 Linearization of sensor characteristics

- a) with a resistor R shunted across the sensor
- b) with a resistor R in series with the sensor and the system powered by a constant-voltage source

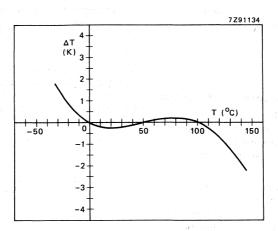
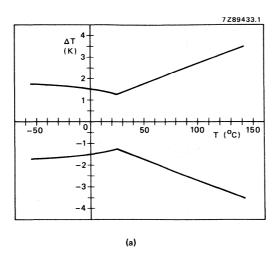



Fig.3 Temperature error ΔT to be expected from a nominal KTY83 sensor linearized over the temperature range 0 to 100 ^{o}C (linearizing resistance 2870 Ω).

Note: because the KTY84 is chiefly intended for use at higher temperatures, say above 100 °C, its almost linear characteristic at these temperatures often renders linearization unnecessary.

Effect of tolerances on linearized sensor characteristics

In practical applications with an arbitrary sensor, the total uncertainty in the sensor reading will be a combination of spread due to manufacturing tolerances and linearization errors. As an example, Fig.4 shows the combined effect of manufacturing-tolerances and linearization errors for the KTY81 sensor linearized over the temperature range 0 to 100 °C. Calibration of the subsequent circuitry (op amps, control circuitry etc.) can reduce this error significantly. Figure 5a shows the temperature error of the system with (linear) output circuitry calibrated at 50 °C, and Fig.5b shows the error of the same system calibrated at 0 and 100 °C.

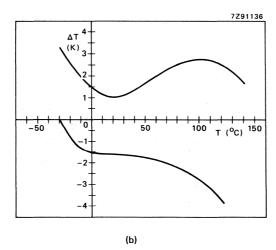
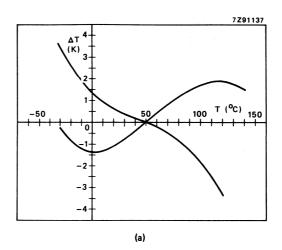



Fig. 4

- a) absolute error ΔT expected of a silicon temperature sensor.
- b) combined effect of manufacturing-tolerances and linearization errors for the KTY83 sensor.

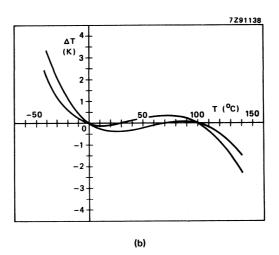


Fig.5

- a) temperature error of system with linear output circuitry calibrated at 50 $^{\rm oC}$
- b) error of the same system calibrated at 0 and 100 °C.

INTRODUCTION TO PRESSURE SENSORS

GENERAL

The trend towards integration in electronic control and measuring systems has created a growing demand for fast, accurate pressure sensors. In this field both the KP-family of monolithic pressure sensors and the KPZ-family of thin-film pressure sensors stand in a leading position. Not only are they both very fast and accurate, they are also highly compatible with the electronic system that they are intended to serve.

The KP100A and the KP101A are essentially aneroid gauges, in that they rely for their pressure signals on the movement of a diaphragm closing an evacuated chamber, but unlike conventional aneroid gauges the KP100A/101A have no need of mechanical or optical means to detect diaphragm movement. In the KP100A/101A movement is detected directly by a series of piezoresistive strain gauges implanted in the diaphragm in a Wheatstone bridge configuration.

The advantages of an all silicon device include highly stable characteristics, principally due to the well defined behaviour of silicon, plus high reliability and low cost. The wealth of experience in semiconductor manufacture is shown in its production.

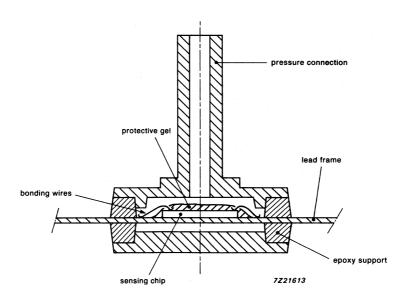


Fig. 1 KP100A/101A pressure sensor; cross section.

INTRODUCTION

The KPZ20G and KPZ21G are reference pressure sensors, which measure the applied pressure with reference to atmospheric pressure. The sensor consists of a thin metal membrane with condensed semiconducting thin-film strain gauges. In the KPZ-sensors the active system is separated from the pressure medium by the metallic membrane. The pressure medium acts on the reverse side of that membrane in contrast to the sensors of the KP-family, where pressure acts on the electrically active side of the crystal. The sensors of the KPZ-family can therefore be used for more dirty pressure media.

Both families of devices can be used in a wide range of applications; the KP-sensors for applications from simple pressure switches in domestic appliances, to altimeters and depth gauges, from domestic and professional barometers to automotive control systems. The KPZ-sensors can be used for detection of small differential pressures (i.e. burglar alarm systems), flow control, control of pneumatic systems and automotive systems (oil pressure, air brake systems, etc.). The KPZ-sensors may also be used for measurement of small mechanical forces acting on the reverse side of the metallic membrane.

Both families of sensors are also available with a new signal conditioning IC, which for many applications replaces much of the external control circuitry and provides linear output signal, temperature compensation and facilities for offset and sensitivity trimming.

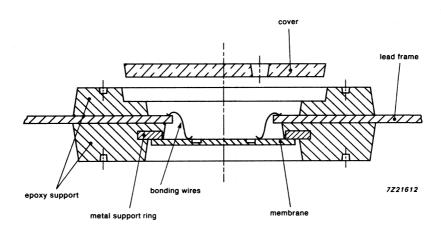


Fig. 2 KPZ20G/21G pressure sensors; cross section.

Piezoresistive strain gauges

In metals and semiconductors, both the mobility and concentration of carriers may change with strain. In semiconductors concentration changes come from a change in energy gap with strain. Depending on the type of doping, an increase in strain may produce either a fall or a rise in material resistivity; this is the piezoresistive effect.

The amount by which resistance changes with strain in given terms of the gauge factor, defined as the fractional change of resistance ($\triangle R/R$) per unit strain ($\triangle L/L$). For semiconductors, gauge factors between 50 and 100 are common, metals have gauge factors around 2.

Figure 3 shows as an example in plan and elevation, the major features of the KP100A. Essentially the KP100A consists of a Wheatstone bridge located in the centre of a rectangular silicon membrane $(1200 \times 2400 \ \mu\text{m}^2)$ closing an evacuated chamber.

Flexure of this membrane produced by external pressure, causes strain in the resistive elements of the bridge, and so (by virtue of the piezoresistive effect) imbalance of the bridge is then used as a measure of the external pressure.

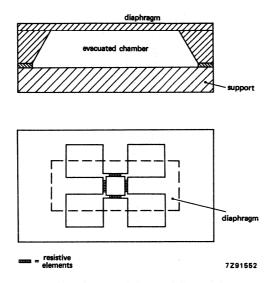


Fig. 3 KP100A in plan and elevation. The strain gauges are centrally located in a rectangular silicon membrane enclosing an evacuated chamber.

Note: The device relies for its action on the fact that the membrane is non-square, and hence that adjacent arms of the bridge experience different strains. If the membrane were square, all arms would experience exactly the same strain and no bridge imbalance would occur.

INTRODUCTION (continued)

Temperature compensation for monolithic pressure sensors

Figure 4 shows the basic bridge arrangement. The sensitivity of the bridge is around 13 mV/V bar at 25 °C (for the KP100A), but since the resistive elements are temperature sensitive, the sensitivity of the bridge itself varies with temperature by about 0.2 %/K. To compensate for this, and to allow its use for wide temperature ranges, the device incorporates integrated VBE-multipliers, these increase the voltage across the bridge as the temperature rises, and so compensates the loss of sensitivity due to rise in temperature.

With a multiplier in circuit, sensitivity of the bridge falls to around 7.5 mV/V bar, but its temperature coefficient falls to an insignificant ± 0.02 %/K. The KP100A/101A has in fact five such integrated multipliers with different temperature characteristics, each optimized for a specific operating voltage.

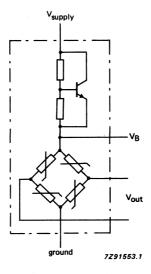


Fig. 4 Bridge configuration. The device incorporates integrated V_{BE} -multipliers that increase the voltage across the bridge as the temperature rises, and so compensate the loss in sensitivity due to rise in temperature.

The relationship between bridge output voltage and pressure, with supply voltage as the parameter, for the KP100A, is shown in Fig. 5 and Fig. 6. These figures illustrate two main points; firstly that the relationship is substantially linear and secondly how the VBE-multiplier functions. In Fig. 5 the multiplier in circuit is optimized for a supply voltage of 4 V, and it is seen that variation in sensitivity over a 25 to 100 °C temperature range is very small, amounting to no more than about 1.5% over the whole temperature range. Figure 6 shows the same relationship using the multiplier optimized for a supply of 10 V.

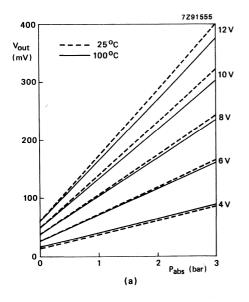


Fig. 5 Bridge output voltage as a function of pressure with supply voltage as a parameter and V_{BE}-multiplier in circuit. Supply voltage optimized at 4 V.

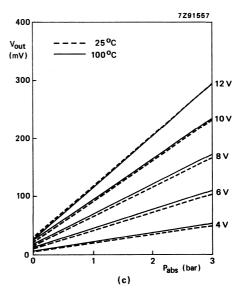


Fig. 6 Bridge output voltage as a function of pressure with supply voltage as a parameter and V_{BE}-multiplier in circuit. Supply voltage optimized at 10 V.

INTRODUCTION (continued)

Further illustration of benefits gained from temperature compensation are shown in Fig. 7. The output voltage is plotted against temperature with pressure as a parameter.

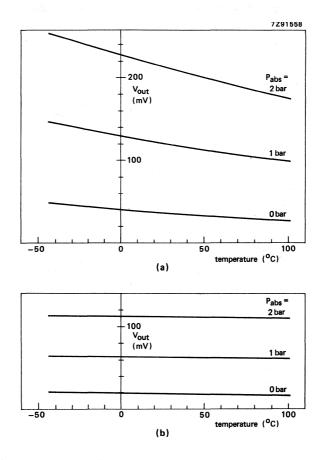


Fig. 7 Output voltage as a function of temperature with pressure as a parameter, (a) without compensation, and (b) with compensation.

The sensor KP100A is optimized for 7.5 V operation, the KP100A1 for 5 V operation. The 1 bar-sensor KP101A is optimized for 5 V operation.

Thin-film pressure sensors

A schematic drawing of the elastic element of the KPZ-sensor (9700 x 9700 μm^2) is shown in Fig. 8. The element consists of a stiff outer rim, a stiff central plunger and two (four in the KPZ21G) bending beams connecting rim and plunger. By application of pressure on the reverse side of the membrane the central plunger is displaced relatively to the fixed outer rim, and the bending beams are deformed. In the regions of maximum positive and negative strain ("") the thin-film strain gauges are deposited. The strain gauges are connected, by means of a metallized layer, to a Wheatstone bridge circuit. Figure 8 shows the sensor before encapsulation.

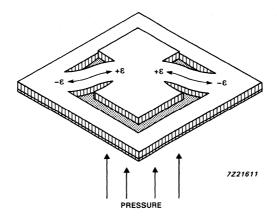


Fig. 8 Elastic element of the thin-film pressure sensor.

INTRODUCTION

INTRODUCTION (continued)

Signal-conditioning IC for pressure sensors

The pressure sensors are also available with a dedicated signal-conditioning IC within the encapsulation. The IC requires an external power supply and provides the following functions:

CONTRACTOR

- an output signal proportional to pressure, ranging from 10 to 90% of the supply voltage;
- temperature compensation;
- facility for offset and sensitivity trimming.

The IC can operate from a range of supply voltages from 4.75 V to 7 V (stabilized).

The circuit is based on a p-type silicon substrate with aluminium metallization. It incorporates low-ohmic WTi and high-ohmic CrSi thin-film resistors. All active areas of the circuit are protected by silicon dioxide glassover.

The functional layout of the IC, which incorporates a preamplifier stage, a current limiting stage and a feedback control line is shown in Fig. 9.

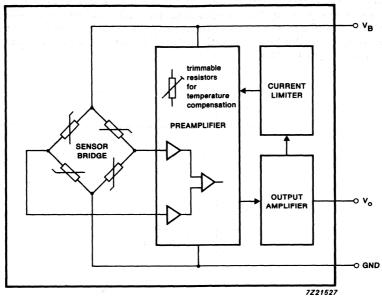


Fig. 9 Signal-conditioning IC.

The preamplifier stage, which incorporates a series of operational amplifiers and trimmable WTi and CrSi-sensors, amplifies the bridge signal by between 20 and 80. Moreover it compensates for the bridge's offset at low operating pressures, and for its temperature coefficients of offset and sensitivity.

The analogue output stage comprises 10 parallel-connected pnp transistors (one of which is utilized for current limiting), to provide an output signal of at least 90% of the supply voltage (for loads from 5 k Ω to infinity). The output stage has a low voltage drop (no more than about 0.5 V), so to prevent oscillation a capacitance of at least 0.1 μ F with a series resistor of 60 Ω is connected externally across the output as shown in Fig. 10.

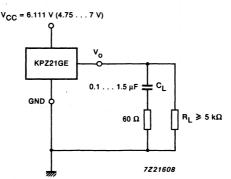


Fig. 10 Output circuit for the pressure sensor KPZ21GE.

The accuracy of the circuit depends on trimming. With very fine trimming a tolerance of about \pm 2% can be realized.

INTRODUCTION (continued)

The sensor/IC combination of the KPZ21GE has an effective measuring range from \pm 1000 kPa relative pressure to below 0 kPa as shown in Fig. 11. The variation is linear down to the point where the residual output voltage of the IC becomes manifest; this residual output voltage is load dependent. As shown in Fig. 12 the linear relationship extends to -44 kPa and gives a residual voltage of 0.285 V for zero load (at $V_{CC} = 6$ mV). For $R_L = 5$ k Ω however, the linear relationship extends down to -87 kPa and gives a residual voltage of 0.07 V.

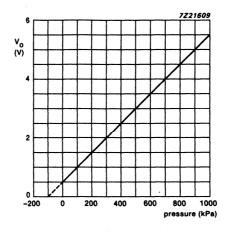


Fig. 11 Output voltage of the KPZ21GE sensor as a function of pressure, for a 6.111 V supply and 5 k Ω load.

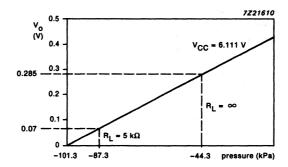
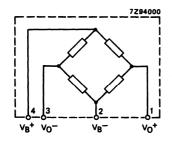
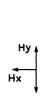


Fig. 12 KPZ21GE residual output voltage dependent on load resistance; supply voltage = 6.111 V.

MAGNETIC FIELD SENSOR

The KMZ10A is an extremely sensitive magnetic field sensor employing the magneto-resistive effect of thin film permalloy.


Its properties enable this sensor to be used in a wide range of applications for navigation, current and field measurement, revolution counters, angular or linear position measurement and proximity detectors, etc.


QUICK REFERENCE DATA

Operating voltage	VB	= 5 V
Operating range	H _V	$=$ $\pm 0.5 \text{ kA/m}$
Auxiliary field	H _X	= 0.5 kA/m
Sensitivity	S	$= 14 \frac{\text{mV/V}}{\text{kA/m}}$
Offset voltage	V_{off}	≤ ± 1.5 mV/V
Bridge resistance	R _{bridge}	= 0.9 to 1.7 k Ω

MECHANICAL AND ELECTRICAL DATA

Dimensions in mm

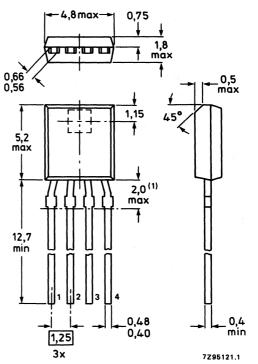
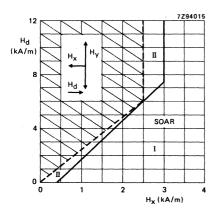
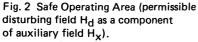


Fig. 1 SOT195.

(1) Terminal dimensions uncontrolled within this area.


RATINGS


	Limiting values in accordance with the Absolute Maximum Syst	em (IEC 134)					
	Operating voltage	V_{B}	max.		9	٧	
	Total power dissipation up to T _{amb} = 134 °C	P _{tot}	max.	, e v ^r ite e	90	mW	
	Storage temperature range	T _{stg}	-65	to + 1	50	оС	
	Operating bridge temperature range	T _{bridge}	-40	to + 1	50	oC	
	THERMAL RESISTANCE						
	From junction to ambient	R _{th j-a}	= , ,	1	80	K/W	
	CHARACTERISTICS						
	T_{amb} = 25 °C and H_X = 0.5 kA/m (1) unless otherwise specified	d					
	Bridge supply voltage	V_{B}	=		5	٧	
	Operating range (1)	Hy	=	± (0.5	kA/m	
	Open circuit sensitivity (1)	S	=	11 to	17	$\frac{mV/V}{kA/m}$	
	Temperature coefficient of output voltage						
	$V_B = \text{constant}; T_j = -25 \text{ to} + 125 {}^{\circ}\text{C}$	TCVo	typ.			%/K	
	$I_B = \text{constant}; T_j = -25 \text{ to} + 125 ^{\circ}\text{C}$	J	typ.			%/K	
	Bridge resistance	R _{br}	0	.9 to	1./	K32	
ĺ	Temperature coefficient of bridge resistance at T _i = -25 to + 125 °C	TCRbr	typ.		25	%/K	
1	Offset voltage	Ų.	ιγρ. ≼			mV/V	
		V _{off}	*		1.5	IIIV/V	
	Temperature coefficient of offset voltage at T _{bridge} = -25 to + 125 °C	TCV _{off}	€	:	± 6	$\frac{\mu V/V}{K}$	
	Linearity deviation of output voltage at						
	$H_y = 0 \text{ to } \pm 0.25 \text{ kAm}^{-1}$	FL '	<			% FS	
	$H_y' = 0 \text{ to } \pm 0.4 \text{ kAm}^{-1}$	FL	<			% FS % FS	
	H _y = 0 to ± 0.5 kAm ⁻¹	FL	< <			% FS	
	Hysteresis of output voltage	•	•	,			
	Operating frequency	^f max	=			MHz	

Note

Before first operation or after operation outside the SOAR (Fig. 2) the sensor has to be reset by application of an auxiliary field $H_x = 3 \text{ kA/m}$.

(1) No disturbing field (H_d) allowed; for stable operation under disturbing conditions see Fig. 2 (SOAR) and see Fig. 3 for decrease of sensitivity.

I Region of permissible operation.

II Permissible extension if $H_V < 0.15 \text{ kA/m}$.

Note: In applications with H_X < 3 kA/m, the sensor has to be reset, after leaving the SOAR, by an auxiliary field of H_X = 3 kA/m.

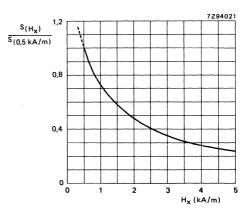


Fig. 3 Relative sensitivity (ratio of sensitivity at certain H_X and sensitivity at $H_X = 0.5 \text{ kA/m}$. Note: In applications with $H_X \leq 3 \text{ kA/m}$ the sensor has to be reset by an auxiliary field of $H_X = 3 \text{ kA/m}$ before using.

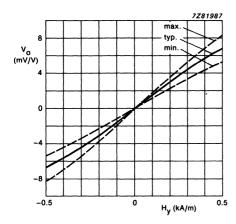


Fig. 4 Sensor output characteristic $H_X = 0.5 \text{ kA/m T}_{amb} = 25^{\circ}\text{C. Voff} = 0$

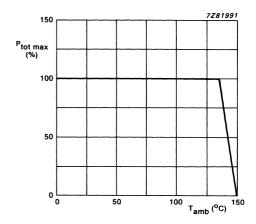
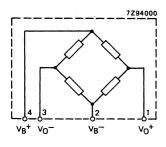


Fig. 5 Power derating curve.

MAGNETIC FIELD SENSOR

The KMZ10B is a sensitive magnetic field sensor employing the magneto-resistive effect of thin film permalloy.


Its properties enable this sensor to be used in a wide range of applications for current and field measurement, revolution counters, angular or linear position measurement and proximity detectors, etc.

QUICK REFERENCE DATA

Operating voltage	VB	=	5 V
Operating range	Hy	=	± 2.0 kA/m
Auxiliary field	H _X	=	3 kA/m
Sensitivity	S	=	$4 \frac{mV/V}{kA/m}$
Offset voltage	V_{off}	€	± 1.5 mV/V
Bridge resistance	R _{bridge}	= 1.2	2 to $2.2~k\Omega$

MECHANICAL AND ELECTRICAL DATA

Dimensions in mm

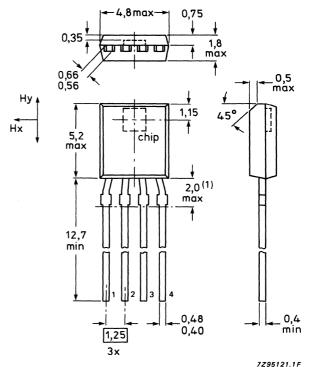


Fig. 1 SOT195.

(1) Terminal dimensions uncontrolled within this area.

F	₹/	1.	Т	I	ľ	۷	G	s
---	----	----	---	---	---	---	---	---

Limiting values in accordance with the Absolute Maximum Sy	stem (IEC 134)				
Operating voltage	V _B	max.	12	V	
Total power dissipation					
up to $T_{amb} = 130 {}^{\circ}C$	P _{tot}	max.	120	mW	
Storage temperature range	T _{stg}	65 to	+ 150	оС	
Operating bridge temperature range	T _{bridge}	-40 to	+ 150	оС	
THERMAL RESISTANCE					
From junction to ambient	R _{th j-a}	=	180	K/W	
CHARACTERISTICS					
$T_{amb} = 25$ °C and $H_X = 3$ kA/m ¹ unless otherwise specified					-
Operating voltage	V_{B}	=	5	V	
Operating range of magnetic field	н _у	=	± 2.0	kA/m	
Open circuit sensitivity	S	= 3.2	to 4.8	$\frac{mV/V}{1-A/\sqrt{2}}$	-
				KA/m	
Temperature coefficient of output voltage	TCVo	typ.	-0.4	%/K	
V_B = constant; T_j = -25 to + 125 °C I_B = constant; T_j = -25 to + 125 °C	TCV		-0.10		
Bridge resistance	R _{br}	1.2	to 2.2	$k\Omega$	
Temperature coefficient of bridge	2.				
resistance at T _{bridge} = -25 to + 125 °C	TCR _{br}	typ.	0.30	%/K	
Offset voltage	$V_{\rm off}$	€	± 1.5	mV/V	
Temperature coefficient of offset				///	
voltage at T _j = -25 to + 125 °C	TCVoff	< <	± 3	$\frac{\mu V/V}{K}$	
Linearity deviation of output voltage at					
$H_y = 0 \text{ to } \pm 1 \text{ KAm}^{-1}$	FL	< .		% FS	
$H_y' = 0 \text{ to } \pm 1.6 \text{ KAm}^{-1}$	FL -	<	± 1.7		
$H_{y}' = 0 \text{ to } \pm 2 \text{ KAm}^{-1}$	FL	<	± 2.0		
Hysteresis of output voltage	V_{oH}	<	0.5	% FS	-
Operating frequency	f _{max}	= ,	1	MHz	

Note

In applications with $\rm Hx < 3~kA/m$, the sensor has to be reset before first operation by application of an auxiliary field $\rm H_X = 3~kA/m$.

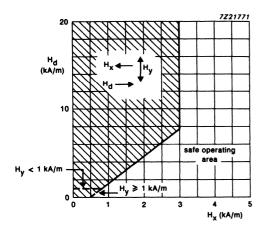


Fig. 2 Safe Operating Area (permissible disturbing field H_d as a component of auxiliary field H_x).

- I Region of permissible operation.
- II Permissible extension if $H_V < 1 \text{ kA/m}$.

Note: In applications with H_X < 3 kA/m, the sensor has to be reset after leaving the SOAR, by an auxiliary field of H_X = 3 kA/m.

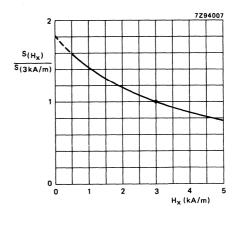


Fig. 3 Relative sensitivity (ratio of sensitivity at certain H_X and sensitivity at $H_X = 3 \text{ kA/m}$. Note: In applications with $H_X \leq 3 \text{ kA/m}$ the sensor has to be reset by an auxiliary field of $H_X = 3 \text{ kA/m}$ before using.

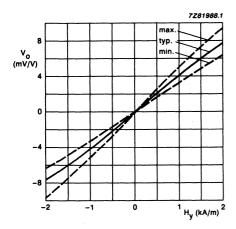


Fig. 4 Sensor output characteristic V_B = constant; T_{amb} = 25 °C; H_X = 3 kA/m; V_{off} = 0.

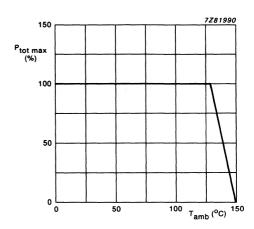
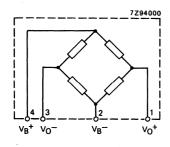
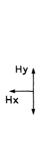


Fig. 5 Power derating curve.


MAGNETIC FIELD SENSOR


The KMZ10C is a magnetic field sensor employing the magneto-resistive effect of thin film permalloy. Its properties enable this sensor to be used in a wide range of applications for current and field measurement, revolution counters, angular or linear position measurement and proximity detectors, etc.

QUICK REFERENCE DATA

Operating voltage	V_{B}	_ 1	5 V
Operating range	Hy	=	± 7.5 kA/m
Auxiliary field	H _X	=	3.0 kA/m
Sensitivity	S		$1.5 \frac{\text{mV/V}}{\text{kA/m}}$
Offset voltage	Voff	€	± 1.5 mV/V
Bridge resistance	R _{bridge}	= 1.0	to 1.8 $k\Omega$

MECHANICAL AND ELECTRICAL DATA

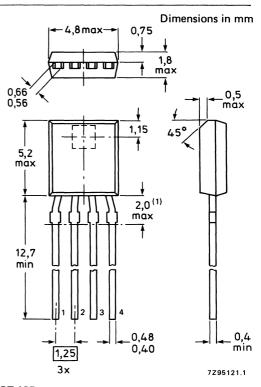


Fig. 1 SOT 195.

(1) Terminal dimensions uncontrolled within this area.

RATINGS				
Limiting values in accordance with the Absolute Maximum Syst	em(IEC 134)			
Operating voltage	V _B	max.	10	٧
Total power dissipation up to T _{amb} = 132 °C	P _{tot}	max.	100	mW
Storage temperature range	T _{stg}	-65 to	+ 150	oC
Operating bridge temperature range	T _{bridge}	-40 to	+ 150	оС
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	= ''	180	K/W
CHARACTERISTICS				
$T_{amb} = 25$ °C and $H_X = 3$ kA/m ⁽¹⁾ unless otherwise specific	ed			
Operating voltage	V_{B}	=	5	V
Operating range of magnetic field	Hy	=	± 7.5	kA/m
Open circuit sensitivity	S		1 to 2	$\frac{\text{mV/V}}{\text{kA/m}}$
Temperature coefficient of output voltage $V_B = \text{constant}$; $T_j = -25 \text{ to} + 125 ^{\text{O}}\text{C}$ $I_B = \text{constant}$; $T_j = -25 \text{ to} + 125 ^{\text{O}}\text{C}$ Bridge resistance	TCV _o VCV _o R _{br}		-0.5 -0.15 to 1.8	
Temperature coefficient of bridge	''br	1.0	10 1.0	Kub
resistance at T _j = -25 to + 125 °C	TCR _{br}	typ.	0.35	%/K
Offset voltage	V_{off}	€	± 1.5	mV/V
Temperature coefficient of offset voltage at $T_{bridge} = -25 \text{ to } + 125 ^{\circ}\text{C}$	TCV _{off}	€	± 2	$\frac{\mu V/V}{K}$
Linearity deviation of output voltage at $H_y = 0$ to ± 3.75 kAm ⁻¹ $H_y = 0$ to ± 6.0 kAm ⁻¹ $H_y = 0$ to ± 7.5 kAm ⁻¹	FL FL FL	< < <	± 2.4 ± 2.7	%= FS %= FS %= FS
Hysteresis of output voltage	VoH	<	0.5	%= FS
Operating frequency	f _{max}	=	1	MHz

Note

1. In applications with $\rm H_X < 3~kA/m$ the sensor has to be reset before first operation by application of an auxiliary field $\rm H_X$ =3 kA/m.

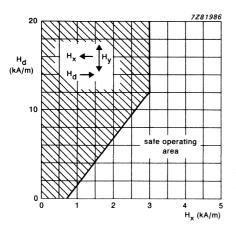


Fig. 2 Safe Operating Area (permissible disturbing field H_d as a component of auxiliary field H_x). Note: In application with H_x < 3 kA/m, the sensor has to be reset after leaving the SOAR, by an auxiliary field of H_x = 3 kA/m.

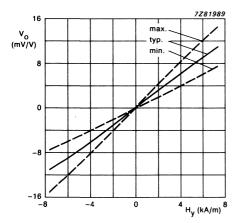


Fig. 4 Sensor output characteristic $H_X = 3 \text{ kA/m T}_{amb} = 25 \text{ }^{\circ}\text{C Voff} = 0.$

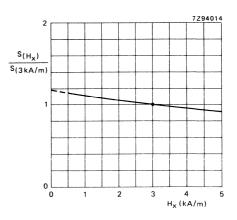


Fig. 3 Relative sensitivity (ratio of sensitivity at certain H_X and sensitivity at $H_X = 3$ kA/m. Note: In application with $H_X \le 3$ kA/m the sensor has to be reset by an auxiliary field of $H_X = 3$ kA/m before using.

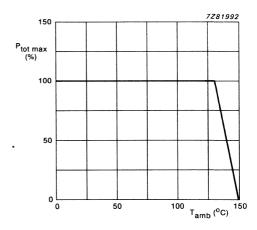


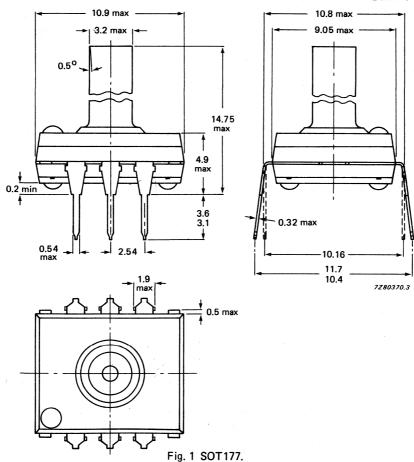
Fig. 5 Power derating curve.

PRESSURE SENSORS

MONOLITHIC PRESSURE SENSOR

The KP100A is designed for measurement of absolute pressures from 0 to 200 kPa. The sensor comprises a monolithic silicon vacuum cell incorporating diffused strain gauge resistors and

The sensor comprises a monolithic silicon vacuum cell incorporating diffused strain gauge resistors and integral sensitivity temperature compensation.


The housing is a plastic moulded 6-pin DIL package with a rigid capillary tube for the pressure connection.

QUICK REFERENCE DATA

Operating pressure range	P	0 to 200 kPa
Operating voltage	V _t , V _e	7.5 V
Operating ambient temperature range	T_{amb}	-40 to + 125 °C

MECHANICAL DATA

Dimensions in mm

12 V

 $1800 \pm 400 \Omega$

± 0.5 %FS

± 25.0 mV

max.

The pressure transducer is suitable for use with non-ionic and non-corrosive media. The silicon diaphragm is covered with Si₃N₄ for protection.

The pressure port is defined for using flexible tubes with 3 mm internal diameter.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

The SOT117 envelope is designed for soldering on a PCB.

RATINGS

Operating voltage

Bridge resistance (see Fig. 2)

Linearity (2)

Offset voltage

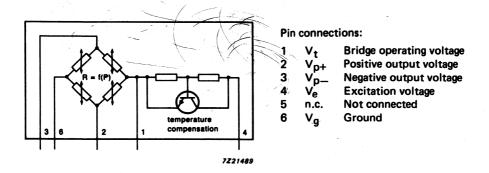
Pressure (absolute)	P _{max}	max.	400 kPa
Burst pressure (absolute)	Pb	≥	600 kPa
Operating ambient temperature range	T_{amb}	-40 t	o + 125 °C
Storage temperature range	T _{stg}	–65 t	o + 150 °C
Lead soldering temperature at $t_{\mbox{sld}}$ $<$ 10 s	T _{sld}	max.	260 °C
CHARACTERISTICS			
T _{amb} = 25 °C unless otherwise specified			
Operating pressure range	Р	· C) to 200 kPa

 V_t, V_e

R_{br} FL

 V_{off}

Pressure hysteresis (3)		=	0.1 %FS
For $V_t = 7.5 \text{ V}$ (operation without temperature con	npensation)		
Offset voltage (1)	$v_{\sf off}$	<	± 37.5 mV
Sensitivity (1)	S	0.	.68 to 1.27 mV kPa
Temperature coefficient of offset voltage	TCVoff	=	± 0.05 %FS/K
Temperature coefficient of sensitivity	TCS	=	-0.22 %/K
For $V_e = 7.5 \text{ V}$ (operation with temperature compe	nsation)		


- · · · · · · · · · · · · · · · · · · ·	011	•	
Sensitivity	S	=	0.30 to 0.90 $\frac{mV}{kPa}$
Temperature coefficient of sensitivity	TCS	=	± 0.06 %/K
Temperature coefficient of offset voltage	TCVoff	=	± 0.06 %FS/K
Temperature coefficient of compensation circuit	TCV _{comp}	-	-12 mV/K
Fau T 10 += 9E 0C:			

For $T_{amb} = -10$ to 85 °C: temperature hysteresis (4)

TH = 0.5 %FS

Notes

- 1. Transducer output voltage is ratiometric to operating voltage.
- 2. Deviation from Best Straight Line (BSL) in pressure range.
- 3. Deviation of output voltage at same pressure point by increasing or decreasing pressure.
- 4. Measurement cycle from $-10 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C} = 30 \, \text{min.}$ and from $+85 \, \text{to} -10 \, ^{\circ}\text{C} = 30 \, \text{min.}$

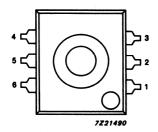


Fig. 2 Schematic diagram.

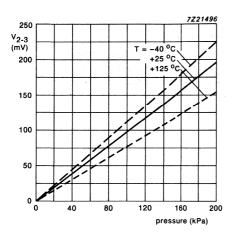


Fig. 3 Operation without temperature compensating circuit.

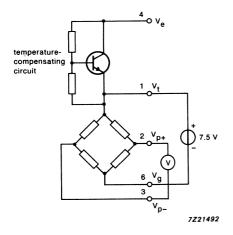


Fig. 5 Schematic without temperature compensation.

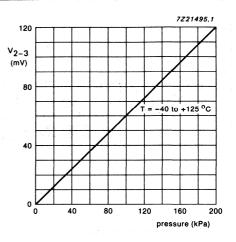


Fig. 4 Operation with temperature compensating circuit.

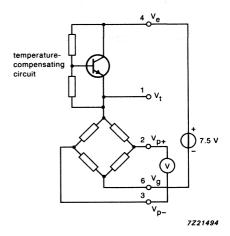
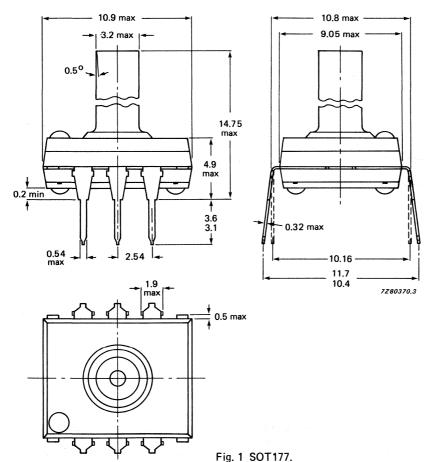


Fig. 6 Schematic with temperature compensation.

MONOLITHIC PRESSURE SENSOR

The KP100A is designed for measurement of absolute pressures from 0 up to 120 kPa.

The sensor comprises a monolithic silicon vacuum cell incorporating diffused strain gauge resistors and integral sensitivity temperature compensation.


The housing is a plastic moulded 6-pin DIL package with a rigid capillary tube for the pressure connection.

QUICK REFERENCE DATA

Operating pressure range	P	0 to 120 kPa
Operating voltage	V_t, V_e	5.0 V
Operating ambient temperature range	T_{amb}	-40 to + 125 °C

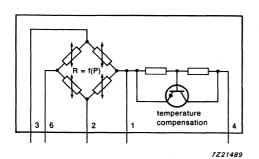
MECHANICAL DATA

Dimensions in mm

The pressure transducer is suitable for use with non-ionic and non-corrosive media. The silicon diaphragm is covered with Si₃N₄ for protection.

The pressure port is defined for using flexible tubes with 3 mm internal diameter.

The SOT-177 envelope is designed for soldering on a PCB.


RATINGS

Limiting values in accord	lance with the	Absolute Maximum	System (IEC	134)

	Limiting values in accordance with the Absolute Maximun	n System (IEC 134	+)		
	Operating voltage	V _t , V _e	max.	. 12	V
	Pressure (absolute)	P _{max}	max.	. 250	kPa
	Burst pressure (absolute)	P _b	\geqslant	600	kPa
	Operating ambient temperature range	T _{amb}	_	-40 to + 125	oC .
	Storage temperature range	T _{stg}	_	-65 to + 150	oC
	Lead soldering temperature at $t_{\text{sld}} < 10 \text{ s}$	T _{sld}	max.	. 260	oC
	CHARACTERISTICS				
	T _{amb} = 25 °C unless otherwise specified				
	Operating pressure range	Р		0 to 120	kPa
	Bridge resistance (see Fig. 2)	R _{br}		1600 ± 500	Ω
	Linearity (note 1)	FL		± 0.5	%FS
	Pressure hysteresis (note 2)	PH	=	0.1	%FS
	For V _t = 5.0 V (operation without temperature compensa	ition)			
	Offset voltage (note 3)	V_{off}	\leq	± 25.0	mV
	Sensitivity (note 3)	S	(0.70 to 1.40	mV kPa
	Temperature coefficient of offset voltage	TCVoff	=	± 0.05	%FS/K
	Temperature coefficient of sensitivity	TCS	=	-0.22	%/K
For V _e = 5.0 V (operation with temperature compensation)					
	Offset voltage	V _{off}	<	± 15.0	mV
	Sensitivity	S	= (0.25 to 0.75	mV kPa
	Temperature coefficient of sensitivity	TCS	=	± 0.06	%/K
	Temperature coefficient of offset voltage	TCV _{off}	=	± 0.06	%FS/K
	Temperature coefficient of compensation circuit	TCV _{comp}	=	12	mV/K
	For $T_{amb} = -10$ to $+85$ °C:		_	0.5	0/ EC
	temperature hysteresis (note 4)	TH	=	0.5	%FS

Notes to the characteristics

- 1. Deviation from Best Straight Line (BSL) in pressure range.
- 2. Deviation of output voltage at same pressure point by increasing or decreasing pressure.
- 3. Transducer output voltage is ratiometric to operating voltage.
- 4. Measurement cycle from $-10 \, ^{\circ}$ C to $+85 \, ^{\circ}$ C = 30 min. and from $+85 \, ^{\circ}$ C to $-10 \, ^{\circ}$ C = 30 min.

Pin connections:

 $\begin{array}{lll} 1 & V_t & \text{Bridge operating voltage} \\ 2 & V_{p+} & \text{Positive output voltage} \\ 3 & V_{p-} & \text{Negative output voltage} \\ 4 & V_e & \text{Excitation voltage} \\ 5 & \text{n.c.} & \text{Not connected} \\ 6 & V_g & \text{Ground} \end{array}$

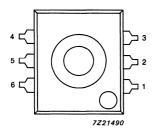


Fig. 2 Schematic diagram.

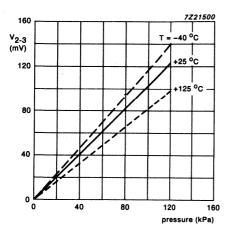


Fig. 3 Operation without temperature compensating circuit.

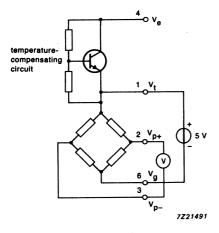


Fig. 5 Schematic without temperature compensation.

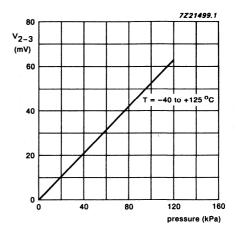


Fig. 4 Operation with temperature compensating circuit.

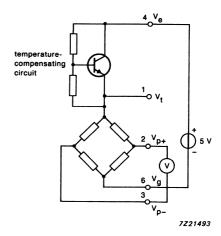
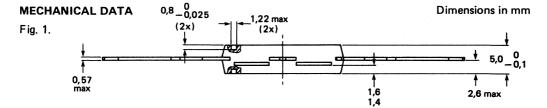
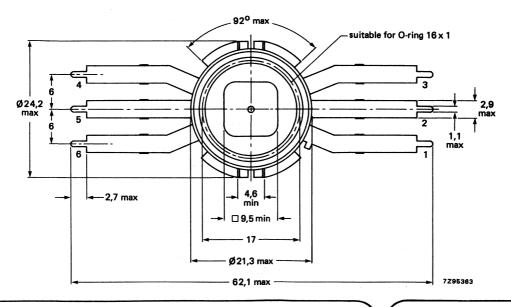


Fig. 6 Schematic with temperature compensation.

This data sheet contains advance information and specifications are subject to change without notice.


THIN-FILM PRESSURE SENSOR


The KPZ20G is designed for measurement of relative pressures from -1 up to 2 bar and for a wide range of gases or fluids. The sensor employs thin-film semi-conductor strain gauges deposited on a copper alloy isolating diaphragm. Sealing is obtained by pressure contact using an O-ring in a groove provided in the transfer-moulded body and electrical connections are made via silver plated lead-outs to form a dual-in-line configuration.

All pressure media, which do not attack copper alloy, HC10 envelope plastic, epoxy glue and assembly parts, may be used. For the sensor reference side, only non-conductive and non-corrosive media are allowed.

QUICK REFERENCE DATA

Pressure range	Р		-100 to 200 kPa
Supply voltage	v_B	typ.	7.5 V
Operating ambient temperature	Tamb		-40 to + 125 °C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V _B	max.	16 V
Maximum pressure	P _{max}	max.	500 kPa
Destructive pressure (t $<$ 10 min.)	Pb	min.	1000 kPa
Operating ambient temperature range	T _{amb}		-40 to + 125 °C
Storage temperature range	T _{stg}		-65 to + 150 °C
Soldering temperature (t < 10 s)	Te	max.	260 °C

CHARACTERISTICS

 $V_B = 7.5 \text{ V}$; $T_{amb} = 25 \text{ °C}$ unless otherwise specified

Pressure range	Р		-100 to 200	kPa
Sensitivity (note 1)	S		0.07 to 0.14	mV/VkPa
Bridge resistance	R _{br}	= -	2.0 ± 1.0	kΩ
Offset voltage (note 1)	$V_{\sf off}$	<	± 5.0	mV/V
Linearity (note 2)	FL	=	± 0.5	%FS
Pressure Hysteresis (note 3)	PH	=	0.2	%FS
Diaphragm natural frequency	^f d	>	5	kHz
Temperature coefficient of sensitivity T _{amb} between -40 and + 85 °C	TCs	=	-0.15	%/K
Temperature coefficient of offset voltage T _{amb} between -40 and + 85 °C	TC _{off}	=	± 0.05	%FS/K

V_B = supply voltage V_P = output voltage pins 3 and 6: not connected

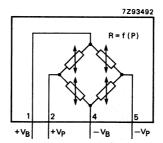


Fig. 2 Schematic diagram.

Notes to the characteristics

- 1. Transducer operating voltage is ratiometric to operating voltage.
- 2. Deviation from Best Straight Line (BSL) in pressure range.
- 3. Deviation of output voltage at same pressure point by increasing or decreasing pressure.

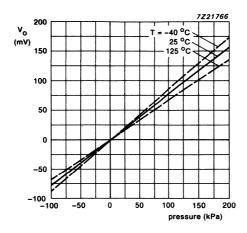
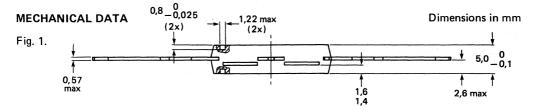
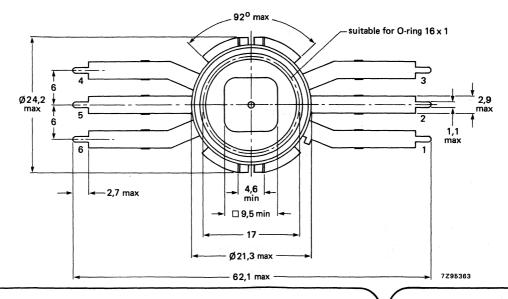


Fig. 3 Nominal output characteristic KPZ20G. Output voltage (V $_{\!0})$ as a component of pressure (kPa) at V $_{\!B}$ = 7.5 V.

This data sheet contains advance information and specifications are subject to change without notice.

THIN-FILM PRESSURE SENSOR


The KPZ20G is designed for measurement of relative pressures between -100 and 1000 kPa and for a wide range of gases or fluids.


The sensor employs thin-film semi-conductor strain gauges deposited on a copper alloy isolating diaphragm. Sealing is achieved by pressure contact using an O-ring in a groove provided in the transfer-moulded body; electrical connections are made via silverplated lead-outs to form a dual-in-line configuration.

All pressure media, which do not attack copper alloy, HC10 envelope plastic, epoxy glue and assembly parts, may be used on the pressure transducer pressure side. For the sensor reference side, only non-corrosive and non-conductive media are permitted.

QUICK REFERENCE DATA

Operating pressure range	:	Р	=	-100 to 1000 kPa
Operating voltage		V_{B}	typ.	7.5 V
Operating ambient temperature		T_{amb}		-40 to + 125 °C

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Operating voltage	V _B	,	16.0	V
Maximum pressure	P _{max}	= 1	2000	kPa
Destructive pressure (t $<$ 10 min.)	P_{b}	≥	3000	kPa
Operating ambient temperature range	T _{amb}	= , , ,	-40 to + 125	οС
Storage temperature range	T _{stg}	=	-65 to + 100	оС
Soldering temperature (t < 10 s)	T _{sld}	max.	260	оС

CHARACTERISTICS

 $V_B = 7.5 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$ unless otherwise specified

Operating pressure range	Р	=	-100 to 1000 kPa
Sensitivity (note 1)	S	=	0.025 to 0.045 mV/VkPa
Bridge resistance	R _b	=	$2.0 \pm 1.0 \text{ k}\Omega$
Offset voltage (note 1)	V_{off}	<	± 5.0 mV/V
Linearity (note 2)	FL	=	± 0.3 %FS
Pressure Hysteresis (note 3)	PH	=	0.2 %FS
Diaphragm natural frequency	f _d	>	5 kHz
For $T_{amb} = -40 \text{ to} + 85 ^{\circ}\text{C}$:			
Temperature coefficient of sensitivity	TCs	=	-0.15 %/K
Temperature coefficient of offset voltage	TCoff	=	± 0.05 %FS/K

V_B = supply voltage V_P = output voltage pins 3 and 6: not connected

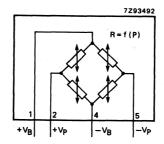


Fig. 2 Schematic diagram.

Notes to the characteristics

- 1. Transducer operating voltage is ratiometric to operating voltage.
- 2. Deviation from Best Straight Line (BSL) in pressure range.
- 3. Deviation of output voltage at same pressure point by increasing or decreasing pressure.

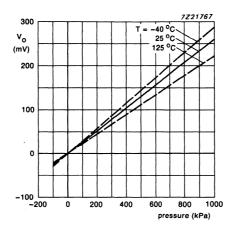


Fig. 3 Nominal output characteristic KPZ21G. Output voltage as a component of pressure. $V_B = 7.5 \ V.$

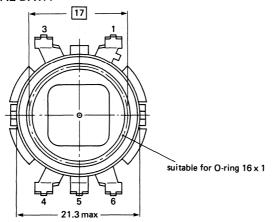
THIN-FILM PRESSURE SENSOR

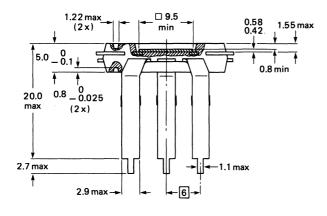
The KPZ21GE is designed for measurement of relative pressures between -100 and 1000 kPa and is provided with a laser trimmed amplifier IC which is calibrated for offset and sensitivity with internal temperature compensation. The sensor is mounted in a SOT198D1 plastic envelope.

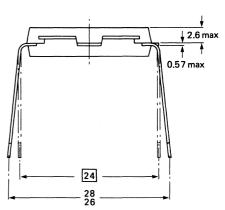
The sensor employs thin-film semi-conductor strain gauges deposited on a copper alloy isolating diaphragm. Sealing is achieved by pressure contact using an O-ring in a groove provided in the transfer-moulded body; electrical connections are made via silverplated lead-outs to form a dual-in-line configuration.

All pressure media, which do not attack copper alloy, HC10 envelope plastic, epoxy glue and assembly parts, may be used on the pressure transducer pressure side. For the sensor reference side, only dry gases are permitted. The thin film bridge resistors and the amplifier IC are covered with silicon gel for protection.

QUICK REFERENCE DATA


Operating pressure range	Р	=	-100 to 1000 kPa
Operating voltage	V_{B}	-	6.111 V
Operating ambient temperature	T _{amb}		-40 to + 120 °C


MECHANICAL DATA


See Fig. 1.

MECHANICAL DATA

Dimensions in mm

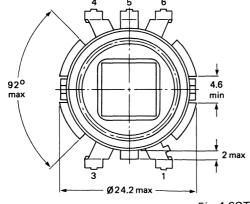


Fig. 1 SOT198D1.

7225215

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Maximum operating voltage	VB	=	8.0 V
Maximum pressure	P _{max}	=	2000 kPa
Destructive pressure (t < 10 min.)	Pb	≽	3000 kPa
Operating ambient temperature range	T _{amb}	=	-40 to + 120 °C
Storage temperature range	T _{stg}	-	-65 to + 150 °C
Soldering temperature (t $<$ 10 s)	T_{sld}	max.	260 °C

CHARACTERISTICS

 $V_B = 6.111 \text{ V; } T_{amb} = 25 \text{ }^{o}\text{C} \text{ unless otherwise specified}$

Supply voltage	V_{B}	= '	4.75 to 7.5 V
Supply current (with no load)	l _B	€	8 mA
Operating pressure range (note 1)	P	=	-100 to 1000 kPa
Sensitivity (notes 2 and 5)	S	=	5.0 mV/VkPa
Offset voltage (notes 2 and 5)	Voff	=	0.500 V
Linearity and pressure hysteresis combined (note 3)		€	1.0 %FS
Short circuit output current limitation	I _{sc}	€	7.0 mA
Load capacitor (with a series resistor of $60 \pm 10 \Omega$)	CL	=	0.1 to 1.5 μF
Load resistor	R_{L}	\geqslant	5 kΩ
Diaphragm natural frequency	f_d	>	5 kHz
Sensor response time for full scale pressure step (note 4)	t _r	\leq	10 ms
Effective leakage area (note 6)	A _{eff}	€	10 ⁻⁷ cm ²

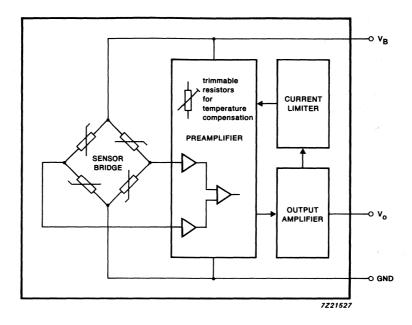


Fig. 2 Circuit diagram.

Notes to the characteristics

- 1. See residual voltage diagram (Fig. 5) for negative pressure values.
- 2. Transducer output voltage is ratiometric to operating voltage.
- 3. Deviation from Best Straight Line (BSL) in pressure range.
- 4. For $C_L = 0.1 \, \mu F$.
- 5. Combined error (pressure and temperature) see error band specification.
- 6. Calculated by $\frac{1.58 (10^{-3}) \text{ V}}{\text{t} \sqrt{3.325 \text{ T}}} \ln \frac{P_0}{P_t}$ with V = Volume (cm³); t = time(s); T = abs. temperature (K); P_0 = start pressure (kPa); P_t = pressure after time t (kPa).

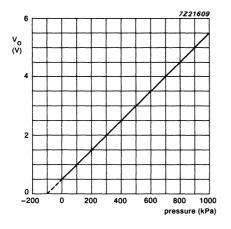


Fig. 3 Nominal output characteristic KPZ21GE. Output voltage as a component of pressure; $V_B = 6.111 \ V.$

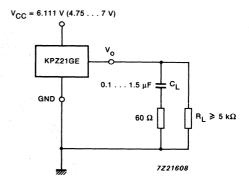


Fig. 4 Recommended output circuit: $\begin{array}{l} R_S = 60~\Omega \pm 10~\Omega; \\ C_L = 0.1~to~1.5~\mu F; \\ R_L > = 5~k\Omega. \end{array}$

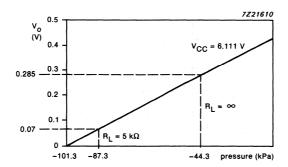


Fig. 5 Residual voltage. Minimum output voltage as a component of load resistance; $V_B = 6.111 \text{ V}$.

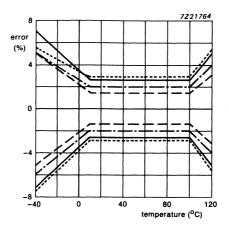


Fig. 6 KPZ21GE error band. Error (%FS) as a component of temperature.

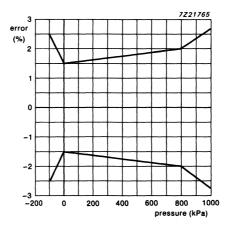


Fig. 7 KPZ21GE error band. Error (%FS) as a function of pressure (kPa).

OXYGEN PROBE ASSEMBLY

The Oxygen Probe Assembly is used for measuring the oxygen partial pressure in flue gases of industrial gas, and oil, fired heating systems or in oxygen control systems.

The Oxygen Probe Assembly consists of a ZrO_2 oxygen sensor and an electronic interface circuit. The sensor comprises two ZrO_2 discs with a small hermetically sealed chamber in between. It is mounted at the tip of a stainless steel rod and it is heated by an internal filament.

The interface circuit comprises a voltage amplifier for the sense signal, a constant current source for the pump and a 1 kHz amplifier for temperature control.

The Oxygen Probe Assembly has to be operated with a measuring assembly which controls the sensor operation and the signal processing. All specified data apply to operation with stabilized sensor temperature.

QUICK REFERENCE DATA

Oxygen pressure range	2 mbars to 1 bar
DC supply voltage Heater supply	-5 V to + 7 V 5.5 V; (typ.) 1.8 A
Sense voltage levels Average pump current	4 - 36 - 76 mV 32 μA (typ.)
Sensor operating temperature	700 °C
Maximum gas temperature	400 °C
Operating ambient temperature	0 to 60 °C

MECHANICAL DATA

See Fig. 1.

MECHANICAL DATA

Dimensions in mm

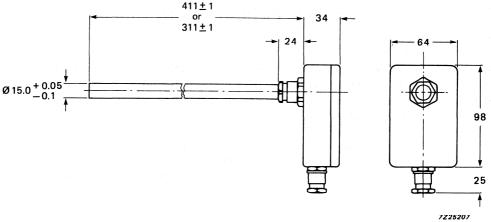


Fig. 1 Oxygen probe assembly.

The sensor is mounted at the end of a stainless steel rod which has a length of 311 mm (KGZ20), or 411 mm (KGZ21). The electronic interface circuit is housed within an epoxy coated aluminium box which has a Pg 9 cablegland.

The probe assembly should be fitted in the flue with a hermetically closed swivel. It must be mounted in such a way that no water or condensation can reach the sensing element. The preferred method of mounting is with the top of the probe pointing approximately 15° downwards.

The temperature of the interface box should not exceed 60 °C.

ELECTRICAL DATA

The pump current is applied as a block signal between 0 and $2 I_p$ (pressurization), I_p being the average pump current. The 1 kHz pump voltage output is used for temperature control.

1	+ 7 V
2	1 kHz signal
3	+ I _p control
4	Heater supply
5	Mass
6	Heater supply
7	– I _p control
8	Sense voltage
9	–5 V

Fig. 2 Terminals interface box.

Terminal connections:

- 1. Positive supply voltage + 7 V \pm 5%; I = 2.5 mA max.
- 9. Negative supply voltage -5 V (-12 V ± 0.5% with respect to positive supply). I = 2.5 mA max.
- 5. Ground (connected to the housing and to the common of the sensing element).
- 4; 6. Heater supply (typ. 1.8 A; 5.5 V).
- 2. 1 kHz pump voltage output: 50 mV RMS*
- 8. Sense voltage output (x 50).
- 3; 7. Control of pump current switch.

Positive pump current (+ Ip) (evacuation):

terminal 3: 1 kHz block signal, T/2, L = -4 V, H = +6 V

terminal 7: (DC voltage) + 6 V

Negative pump current $(-I_D)$ (pressurization):

terminal 3: (DC voltage) + 6 V

terminal 7: 1 kHz block signal, T/2, L = -4 V, H = +6 V.

The required shape of the block signal is shown in Fig. 3. The output impedance of the control circuit should be $< 1 \text{ k}\Omega$.

The Kroschu Low Voltage Cable LiYCY is recommended as a connection cable.

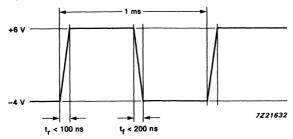


Fig. 3 Required shape of pump switch block signal.

^{*} Heater voltages to be adjusted for V₂₋₅ = 50 mV RMS.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Positive supply voltage V ₁₋₅	min.	0	٧	max.	+ 18	V
Negative supply voltage V ₉₋₅	min.	-18	٧	max.	0	V
Total supply voltage V ₁₋₉				max.	18	V
Pump current switch control inputs 3-7				max.		V (note 1)
	min.	0.5	V (note 2)		
DC current to inputs 3 and 7				max.	10	mA
Pump and sense voltage outputs 2 and 8				short	circuit protect	ted
Heater supply connections 4 and 6				max.	40	V (note 3)
Storage temperature range					-40 to + 150	oC
Ambient operating temperature					0 to60	oC
Gas temperature				max.	400	oC
Gas flow rate				max.	20	m/s
Heater power				max.	15	W
Repetitive permissible acceleration				max.	5	g
Incidental permissible acceleration				max.	30	g

CHARACTERISTICS

(Operation with stabilized sensor temperature)

Oxygen pressure range	2 mbar to 1 bar
Sense voltage levels	4 - 36 - 76 mV
Pump current	typ. 32 μA
•	
Heater supply (note 4)	typ. 1.8 A; 5.5 V
Operating temperature	nom. 700 °C
1 kHz pump resistance at 700 °C	typ. 200 Ω
Sensitivity (note 5)	16.51 ms/mbar
Accuracy (note 6)	better than 2 mbar in the range
	10 - 255 mbar (when calibrated in ambient air)
Response time	< 10 s
Warming-up time	< 100 s

Notes

- 1. Above positive supply voltage.
- 2. Below negative supply voltage.
- 3. With respect to ground and sensing element.
- 4. Heater voltage to be adjusted for $V_2 = 50 \text{ mV RMS}$.
- 5. The sensitivity is related to the differential cycle time 4 36 76.
- 6. Calibration can be done with ambient air. The reading should be: 0.207 x barometric pressure (in mbar).

APPLICATION NOTES

The sensor can be used in the exhaust gases after combustible and many other gas mixtures. Halides, lead an particulate matter can degrade performance over long periods of operation. Reducing atmospheres may in time impair the catalytic effect of the platinum electrodes.

The sensor should remain at operating temperature when exposed to exhaust gases. When not in operation, storage in ambient air is recommended.

Block diagrams of the qxygen probe assembly and the external circuitry (measuring assembly) are shown in Fig. 4.

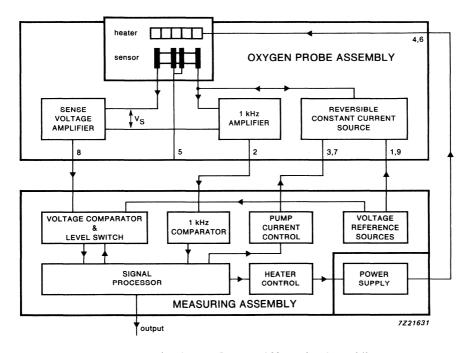


Fig. 4 KGZ20/21 Oxygen Probe and Measuring Assemblies.

The concept of cyclic evacuation and pressurization and the cycle periods t_p and t_d are illustrated in Fig. 5. The pump current is reversed at the Nernst voltage levels of 0 and 80 mV. Actual O2-measurements take place using the periods t_1 , t_2 , t_4 and t_5 , determined by the additional preset levels at 4, 36 and 76 mV.

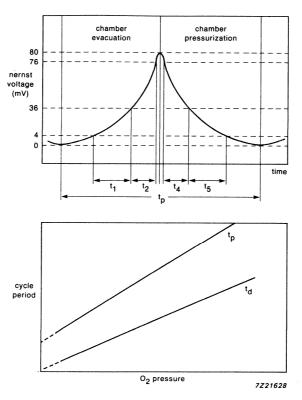


Fig. 5 Cyclic evacuation and pressurization; $t_d = t_1 - t_2 + t_5 - t_4$.

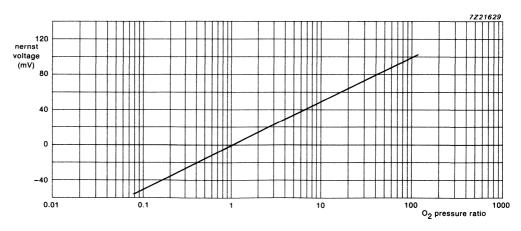


Fig. 6 Nernst voltage as a component of ${\sf O}_2$ pressure ratio.

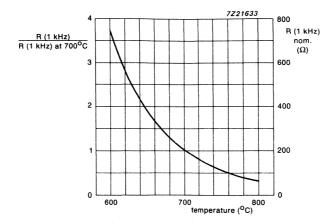


Fig. 7 Change in electrical resistance of pump element as a function of temperature.

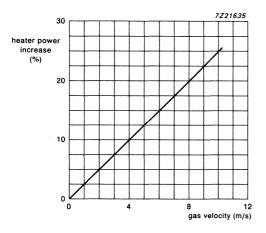


Fig. 8 Increase of required heater power as a function of gas velocity (sensor temperature 700 °C, gas temperature 20 °C).

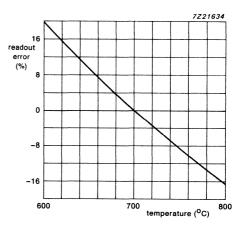


Fig. 9 Calculated temperature dependence of sensor readout.

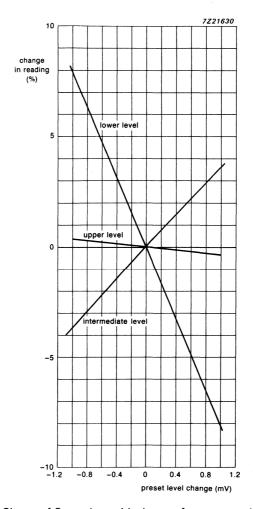


Fig. 10 Change of ${\rm O}_2$ readout with change of sense preset levels.

OXYSTOR

The Oxystor can be used for measuring the oxygen partial pressure in flue gases of gas and of oil fired heating systems or in oxygen control systems.

The Oxystor consists of a ZrO2 oxygen sensing element within a protective housing. The sensing element comprises two ZrO2 discs with a small hermetically sealed chamber in between. It is mounted on a stainless steel base plate and surrounded by a porous stainless steel cap. The sensor is heated by an internal filament. The Oxystor has a 4-fold faston connector at the back.

The Oxystor has to be operated with a measuring assembly which controls the sensor operation and the signal processing.

Two types of operation are possible:

- 1. With unstabilized sensor temperature (TC = 0 mode; no heater power control).
- 2. With stabilized sensor temperature (700 °C) and optimized accuracy.

QUICK REFERENCE DATA

Oxygen pressure range	2 mbar to 1 bar
Heater supply voltage	4.35 V; 1.85 A
Sense voltage levels	45 - 64 - 85 mV (TC — 0 mode)
	4 - 36 - 76 mV (stab. mode)
Pump current	40 μΑ
Sensor operating temperature	700 °C
Max. gas temperature	300 °C
Operating ambient temperature range	0 to 80 °C

MECHANICAL DATA

Dimensions in mm

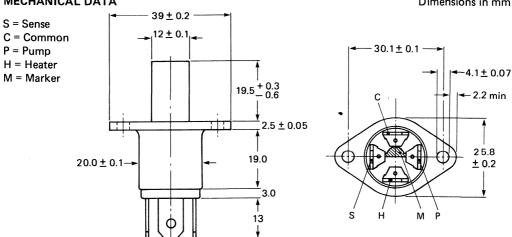


Fig. 1 Oxystor assembly.

One side of the heater is connected to the sensor housing. The dimensions of the fastons are 8.0 x 0.7 mm.

7Z25209

The Oxystor should be mounted in the flue in such a way that erratic operation caused by direct contact with water as a result of condensation is prevented.

RECEPTACLES FOR THE OXYSTOR KGZ10

In the connector of the oxystor, four 8.0×0.7 mm faston contact tabs are mounted at the back. This size of faston is normally used in headlight installations in automobiles. Receptacles for 8.0 mm faston contact tabs are available in various materials (and with various finishes). The choice of material and finish depends on the operating temperature of the contact and on the environmental conditions. The following list shows some materials (and finishes) and their allowable connection temperatures (in accordance with AMP Holland BV).

material	finish	allowable connection temperature ^O C
brass	-	90
	tin plated	110
	silver plated	130
phosphor bronze		90
	tin plated	110
	silver plated	130
steel	nickel plated	250

Currently, the most used receptacles are made of tin plated brass. Under normal circumstances (flue gas temperature < 300 °C, ambient temperature 20 °C), these receptacles are suitable for use with the Oxystors. Under unfavourable conditions, when the connection temperature is expected to rise above 110 °C (high flue gas temperature, less convection, mounting in an enclosed volume), it is advisable to use nickel plated steel receptacles.

The synthetic material at the back of the Oxystor connector can withstand 250 °C. This temperature is normally not reached. Even when the Oxystor bottom plate has a temperature of 300 °C, the temperature of the synthetic material is found to be only 180 °C.

ELECTRICAL DATA

The heater can be supplied with either a DC or an AC voltage (typ. 4.35 V at 1.85 A).

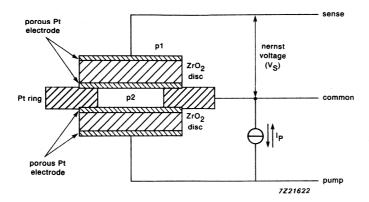


Fig. 2 Oxygen sensor cross section, showing the pump disc and the pressure sensing disc. The heating coil is not shown.

The pump current of 40 μ A can be supplied as a DC current (TC = 0 mode) or as a 1 kHz pulsed current (stabilized mode). In the latter case, the 1 kHz resistance value of the pump disc is used for temperature readout control.

When using a sense voltage amplifier, the input resistance of the amplifier should be > 1 M Ω . The leads between the Oxystor and the amplifier should not exceed 50 cm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Heater supply voltage	max.	5	V
Sensor connections (pump, common, sense) voltage with respect to sensor housing			
Mutually			
when at operating temperature	max.	1	V
without heater supply voltage	max.	5	V
Pump (or sense) current; t _{max.} = 10 s	max.	100	μΑ
Permissible intern. O ₂ -pressure	max.	1	bar
Permissible intern. O ₂ -pressure	min.	0.01	mbar
Storage temperature range		-40 to +80	oC
Ambient operating temperature range		0 to 80	оС
Gas temperature	max.	300	oC
Temperature of base plate	max.	300	оС
Gas flow rate	max.	20	m/s
Repetitive permissible acceleration	max.	5	g
Incidental permissible acceleration	max.	30	g

CHARACTERISTICS

Oxygen pressure range

Sense voltage levels

Pump current

Heater supply

Operating temperature

Pump resistance at 700 °C

Sensitivity (typical values) (note 1)

Accuracy (note 2)

Response time

Warming-up time

2 mbar to 1 bar

45 - 64 - 85 mV (TC = 0 mode)

4 - 36 - 76 mV (stabilized mode)

 $40 \mu A DC (TC = 0 mode)$

40 μ A avg. 1 kHz pulse

(stabilized mode)

4.35 V; 1.85 A (typ.)

700 °C (nom.)

625 to 800 °C (TC = 0 mode)

DC 1 k Ω (typ.)

1 kHz 120 Ω (typ.)

1.05 ms/mbar (TC = 0 mode)

13 ms/mbar (stabilized mode)

better than 5 mbar

(TC = 5 mbar)

better than 2 mbar

(stabilized mode)

< 4 s (TC = 0 mode)

< 10 s (stabilized mode)

< 100 s

Notes to the characteristics

- 1. The sensitivities are related to the differential cycle periods 45 64 85 and 4 36 76.
- 2. The accuracy quoted is for the pressure range 10 to 255 mbar and after calibration in ambient air. During calibration, the reading should be: 0.207 x barometric pressure (mbar).

APPLICATION NOTES

The Oxystor can be used in exhaust gases after combustion, and many other gas mixtures. Halides, lead a particulate matter can degrade performance over long periods of operation. Reducing atmospheres may in time impair the catalytic effect of the platinum electrodes.

The sensor should remain at operating temperature when exposed to exhaust gases. When not in operation, storage in ambient air is recommended.

Figure 3 illustrates the concept of cyclic evacuation and pressurization and the cycle periods t_p and t_d . The pump current is reversed at the Nernst voltage levels of 41 and 89 mV (TC = 0 mode) or 0 and 80 mV (stabilized mode). Actual O₂ measurements take place using the periods t_1 , t_2 , t_4 and t_5 , determined by the additional preset levels at 45, 64 and 85 mV (TC mode) or 4.36 and 76 mV (stabilized mode).

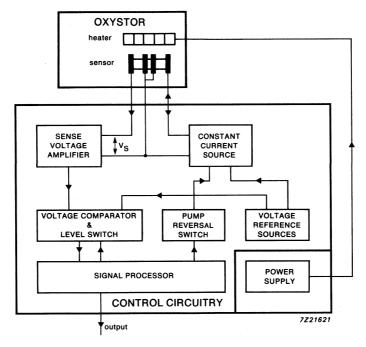


Fig. 3 Oxystor control block diagram.

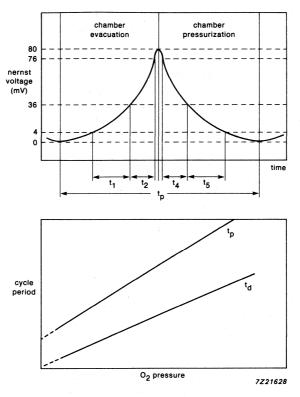


Fig. 4 Concept of differential period t_d , with 3 additional preset levels 4, 30 and 76 mV in the measurement of the period.

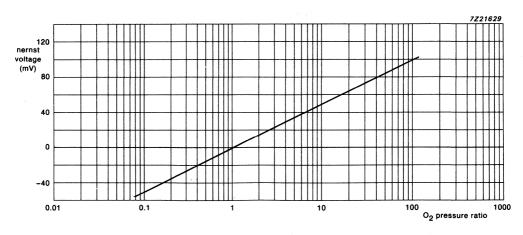


Fig. 5 Nernst voltage as a function of O_2 pressure ratio; T = 1000 $^{\circ}$ K.

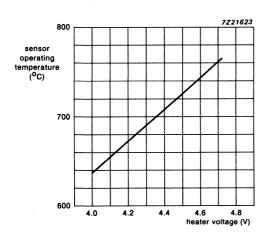


Fig. 6 Sensor operating temperature as a component of heater voltage.

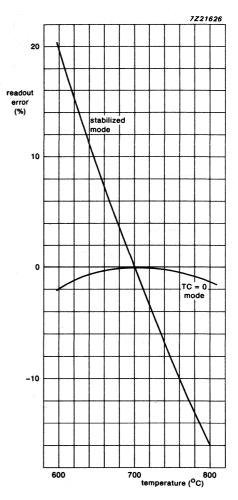


Fig. 7 Calculated temperature dependence of the sensor readout in TC = 0 mode and in stabilized mode.

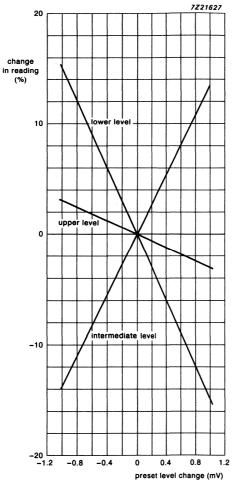


Fig. 8 Change in reading as a component of preset level change, TC = 0 mode.

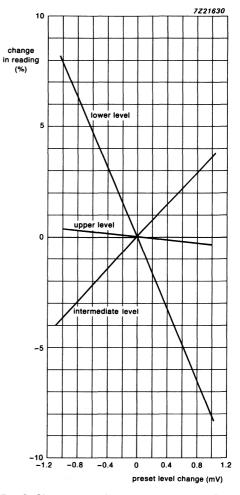


Fig. 9 Change in reading as a component of preset level change, stabilized mode.

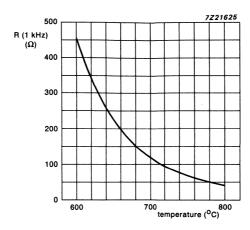


Fig. 10 Temperature as a component of 1 kHz pump resistance.

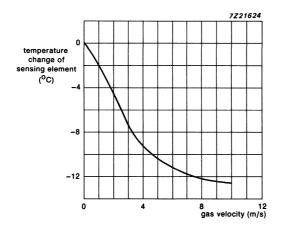


Fig. 11 Change of sensing element temperature as a component of gas velocity.

SILICON TEMPERATURE SENSORS

These sensors have a positive temperature coefficient of resistance and are for use in measurement and control.

QUICK REFERENCE DATA

Resistance at T _{amb} = 25 °C			
Ic = 1 mA	KTY81-110	R ₂₅ 990 - 1010 Ω	
	KTY81-120	R ₂₅ 980 - 1020 Ω	
	KTY81-121	R ₂₅ 980 - 1000 Ω	
	KTY81-122	R ₂₅ 1000 - 1020 Ω	
	KTY81-150	R ₂₅ 950 - 1050 Ω	
	KTY81-151	R ₂₅ 950 - 1000 Ω	
	KTY81-152	R ₂₅ 1000 - 1050 Ω	
	KTY81-120	is composed of groups —121 and —122 and is correspondingly designated. is composed of groups —151 and —152 and is correspondingly designated.	
	KTY81-150		
Operating ambient temperature range Tamb		-55 to +150 °C	

MECHANICAL DATA

Dimensions in mm

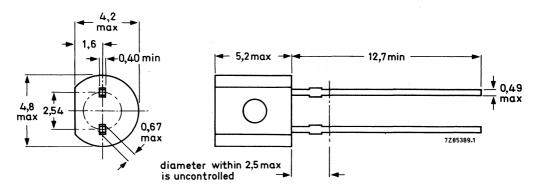


Fig. 1 SOD-70.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

CHARACTERISTICS

(Based on the measurements in liquid at T_{amb} = 25 °C unless otherwise specified).

Resistance

IC = 1 mA	KTY81-110	R ₂₅	990 - 1010 Ω
	KTY81-120	R ₂₅	980 - 1020 Ω
	KTY81-121	R ₂₅	980 - 1000 Ω
	KTY81-122	R ₂₅	1000 - 1020 Ω
	KTY81-150	R ₂₅	950 - 1050 Ω
	KTY81-151	R ₂₅	950 - 1000 Ω
	KTY81-152	Ras	1000 - 1050 Ω

Temperature coefficient typ. 0.79 %/K

Resistance ratio R100/R25 1.696 ± 0.020 R-55/R25 0.490 ± 0.010

Thermal time constant*
in still air

in still liquid**
in flowing liquid**

Measuring temperature range

typ.	30 s
typ.	5.0 s
typ.	3.0 s

-55 to +150 °C

T _{amb} oC	Resistance Ω
-55 -50 -40 -30 -20 -10	490 515 567 624 684 747
0 10 20 25 30 40	961 1000 1040 1122

T _{amb} °C	Resistance Ω
50	1209
60	1299
70	1392
80	1490
90	1591
100	1696
110	1805
120	1915
130	2023
140	2124
150	2211

Ambient temperature and corresponding average resistance values of sensor ($I_C = 1 \text{ mA}$).

- * The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.
- ** Inert liquid FC43 of 3M company.

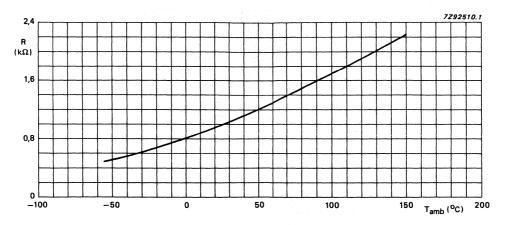


Fig. 2 Average resistance value of sensor at $I_C = 1$ mA as a function of temperature.

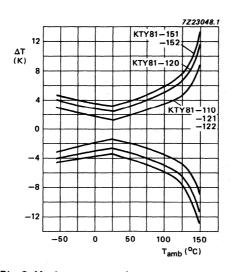


Fig. 3 Maximum expected temperature error ΔT .

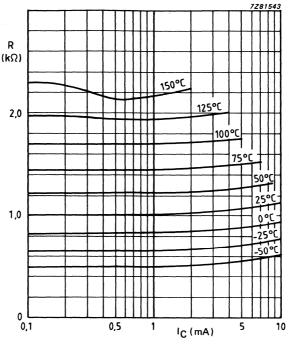


Fig. 4 Sensor resistance as a function of operating current (see Note).

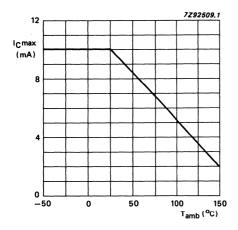


Fig. 5 Maximum operating current for safe operation.

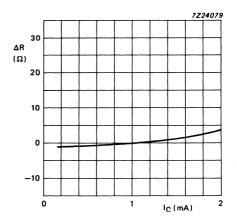


Fig. 6 Resistance deviation as a function of measuring current in still liquid; $T_{amb} = 25 \ ^{\circ}\text{C}.$

Note

To minimize temperature error, an operating current of $I_C = 1$ mA is recommended for temperatures above 100 °C.

These sensors have a positive temperature coefficient of resistance and are for use in measurement and control systems.

QUICK REFERENCE DATA

Resistance at T _{amb} = 25 °C					
Ic = 1 mA		KTY81-210	R ₂₅	1980 - 2020 Ω	
		KTY81-220	R ₂₅	1960 - 2040 Ω	
		KTY81-221	R ₂₅	1960 - 2000 Ω	
		KTY81-222	R ₂₅	2000 - 2040 Ω	
		KTY81-250	R ₂₅	1900 - 2100 Ω	
		KTY81-251	R ₂₅	1900 - 2000 Ω	
		KTY81-252	R ₂₅	2000 - 2100 Ω	
		KTY81-220		nposed of groups —221 and — correspondingly designated.	222
		KTY81-250		nposed of groups —251 and — correspondingly designated.	252 🕶
perating ambient temperature rar	nge T _{amb}			-55 to +150	oC

MECHANICAL DATA

Dimensions in mm

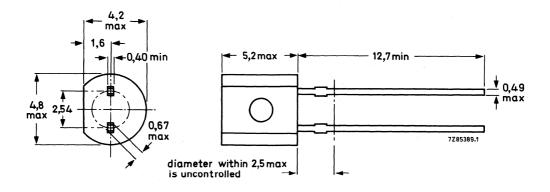


Fig. 1 SOD-70.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

T _{amb} = 25 °C		IC	max.	10 mA
T _{amb} = 150 °C		Ic	max.	2.0 mA

CHARACTERISTICS

(Based on the measurements in liquid at Tamb = 25 °C unless otherwise specified).

_				
н	ac.	sta	n	۵۰

IC = 1 mA	KTY81-210	R ₂₅	1980 - 2020 Ω
	KTY81-220	R ₂₅	1960 - 2040 Ω
	KTY81-221	R ₂₅	1960 - 2000 Ω
	KTY81-222	R ₂₅	2000 - 2040 Ω
	KTY81-250	R ₂₅	1900 - 2100 Ω
	KTY81-251	R ₂₅	1900 - 2000 Ω
	KTY81-252	R25	2000 - 2100 Ω

Temperature coefficient 0.79 %/K typ.

Resistance ratio R100/R25 1.696 ± 0.020 R-55/R25 0.490 ± 0.010

Thermal time constant*

in still air in still liquid** in flowing liquid

Measuring temperature range ***

typ.	
typ.	
typ.	

30 s

5 s 3 s

-55 to +150 °C

T _{amb} oc	Resistance Ω
-55	980
50	1030
-40	1135
30	1247
20	1367
-10	1495
0	1630
10	1772
20	1922
25	2000
30	2080
40	2245

T _{amb}	Resistance Ω
50	2417
60	2597
70	2785
80	2980
90	3182
100	3392
110	3607
120	3817
125	3915
130	4008
140	4166
150	4280

Ambient temperatures and corresponding resistance values of sensor (IC = 1 mA).

- The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.
- Inert liquid FC43 of 3M company.
- Restricted accuracy in the temperature range 125 °C to 150 °C.

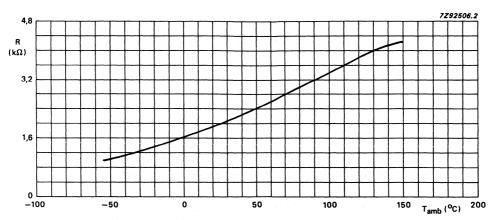


Fig. 2 Average resistance value of sensor at IC = 1 mA as a function of temperature.

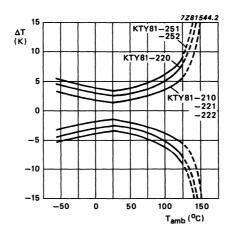


Fig. 3 Maximum expected temperature error ΔT .



Fig. 4 Sensor resistance as a function of operating current (see Note).

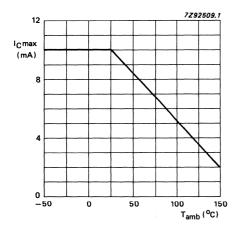


Fig. 5 Maximum operating current for safe operation.

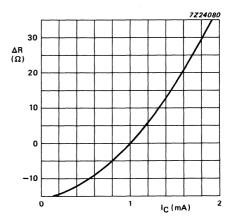


Fig. 6 Resistance deviation as a function of measuring current in still liquid; $T_{amb} = 25$ °C.

Note

To keep the temperature error low, an operating current of $I_C = 1 \text{ mA}$ is recommended for temperatures above 100 °C.

These sensors have a positive temperature coefficient of resistance and are for use in measurement and control.

QUICK REFERENCE DATA

		Type tape	
Resistance at T _{amb} = 25 °C		(identification colour)	
I _C = 1 mA	KTY83-100	$R_{25} = 990 - 1010 \Omega$; yellow	
	KTY83-120	$R_{25} = 980 - 1020 \Omega$; white or green	
	KTY83-121	$R_{25} = 980 - 1000 \Omega$; white	
	KTY83-122	$R_{25} = 1000 - 1020 \Omega$; green	
	KTY83-150	$R_{25}^{25} = 950 - 1050 \Omega$; black or blue	
	KTY83-151	$R_{25}^{25} = 950 - 1000 \Omega$; black	
	KTY83-152	$R_{25} = 1000 - 1050 \Omega$; blue	
	KTY83-120	is composed of groups —121 and —122 and is correspondingly designated.	
	KTY83-150	is composed of groups —151 and —152 and is correspondingly designated.	
Operating ambient temperature range T _{amb}		-55 to +175 °C ◆	_

MECHANICAL DATA

Dimensions in mm

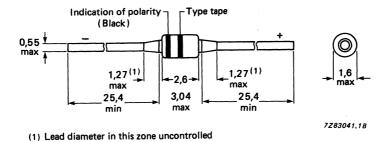


Fig. 1 DO-34 (SOD-68).

Note

The sensor has to be operated with the lower potential at the marked connection (black type).

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

CHARACTERISTICS

(Based on the measurements in liquid at T_{amb} = 25 °C unless otherwise specified)

Resistance

$I_C = 1 \text{ mA}$	KTY83-110	$R_{25} = 990 - 1010 \Omega$
	KTY83-120	$R_{25} = 980 - 1020 \Omega$
	KTY83-121	$R_{25} = 980 - 1000 \Omega$
	KTY83-122	$R_{25} = 1000 - 1020 \Omega$
	KTY83-150	$R_{25} = 950 - 1050 \Omega$
	KTY83-151	$R_{25} = 950 - 1000 \Omega$
	KTV83-152	$R_{or} = 1000 - 1050 \Omega$

Temperature coefficient typ. 0.76 %/K

—➤ Resistance ratio R100/R25 1.67 ± 0.02 R−55/R25 0.50 ± 0.01

Thermal time constant*

in still air
in still liquid**
in flowing liquid**

typ. 1.0 s typ. 0.5 s

typ.

Measuring temperature range

-55 to +175 °C

20 s

T _{amb} oC	Resistance Ω
55	500
-50	525
-40	577
-30	632
-20	691
-10	754
0	820
10	889
20	962
25	1000
30	1039
40	1118
50	1202
60	1288

T _{amb} °C	Resistance Ω
70	1379
80	1472
90	1569
100	1670
110	1774
120	1882
125	1937
130	1993
140	2107
150	2225
160	2346
170	2471
175	2535

Ambient temperatures and corresponding resistance values of sensor ($I_C = 1 \text{ mA}$).

- * The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.
- ** Inert liquid FC43 of 3M company.

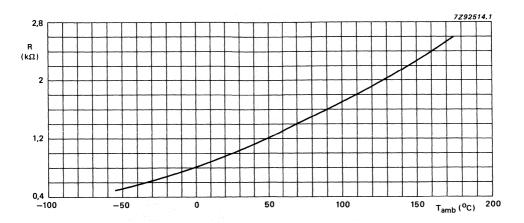


Fig. 2 Average resistance value of sensor at $I_C = 1$ mA as a function of temperature.

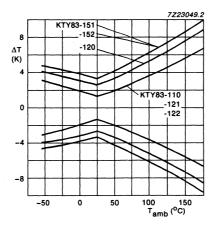


Fig. 3 Maximum expected temperature error ΔT .

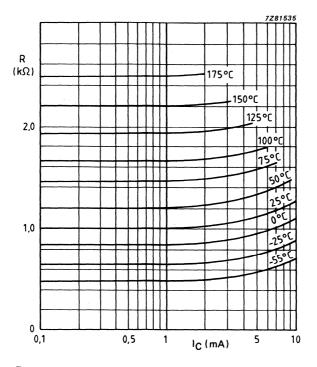


Fig. 4 Sensor resistance as a function of operating current.

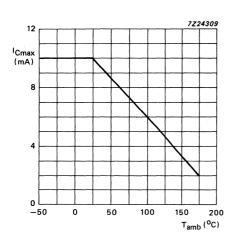


Fig. 5 Maximum operating current for safe operation.

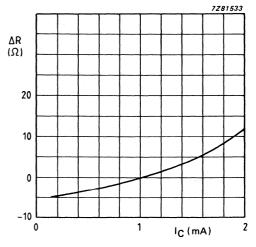


Fig. 6 Resistance deviation as a function of measuring current in still liquid; $T_{amb} = 25 \ ^{o}C.$

These sensors have a positive temperature coefficient of resistance and are for use in measurement and control.

QUICK REFERENCE DATA

Resistance at T _{amb} = 100 °C		Type tape (identification colour)	
I _C = 2 mA			
	KTY84-130	R100 = $970 - 1030 \Omega$; yellow	
	KTY84-150	R100 = 950 - 1050 Ω; black or blue	
	KTY84-151	R100 = 950 - 1000 Ω ; black	◀
	KTY84-152	R100 = 1000 - 1050 Ω ; blue	
	KTY84-150	is composed of groups —151 and —152, and is correspondingly designated.	
Measuring temperature range		0 to +300 °C	

MECHANICAL DATA

Dimensions in mm

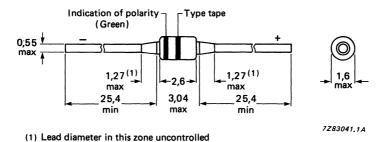


Fig. 1 DO-34 (SOD-68).

Notes

- 1. The sensor has to be operated with the lower potential at the marked connection.
- 2. Leads of the sensor are covered with a nickel layer. Hard soldering or welding is recommended.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

CHARACTERISTICS

(Based on the measurements in liquid at Ic = 2 mA;

T_{amb} = 100 °C unless otherwise specified)

 $KTY84-130 R100 = 970 - 1030 \Omega$ KTY84-150 R100 = $950 - 1050 \Omega$ KTY84-151 R100 = $950 - 1000 \Omega$ KTY84-152 R100 = $1000 - 1050 \Omega$ Temperature coefficient 0.61 %/K typ. R250/R100 2.148 ± 0.050 Resistance ratio R 25/R100 0.599 ± 0.007 Thermal time constant* in still air typ. 20 s in still liquid** 1.0 s typ. in flowing liquid** 0.5 styp. 0 to +300 °C Measuring temperature range -55 to +300 °C Storage temperature

- * The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.
- ** Inert liquid FC43 of 3M company.

Notes

- → 1. For temperatures > 200 °C a sensor current IC of 2 mA must be used.
 - 2. At operating temperatures above 250 °C a reduction of life time should be taken into consideration.

T _{amb} oC	Resistance Ω
0	491
10	533
20	576
25	599
30	622
40	670
50	720
60	772
70	826
80	882
90	940
100	1000
110	1062
120	1126
130	1193
140	1261
150	1331
160	1404
170	1478
180	1555
190	1633
200	1714
210	1797
220	1882
230	1968
240	2057
250	2148
260	2241
270	2334
280	2426
290	2514
300	2592

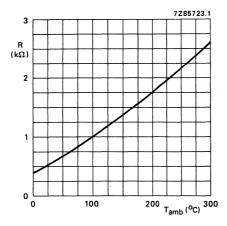


Fig. 2 Resistance value of sensor at $I_C = 2$ mA as a function of ambient temperature.

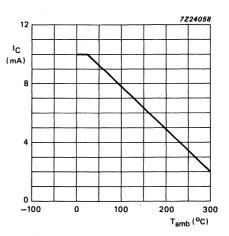


Fig. 3 Maximum operating current for safe operation.

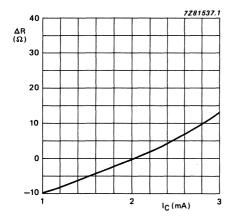


Fig. 4 Deviation of sensor resistance R as a function of operating current I_C in still liquid; $T_{amb} = 100$ °C.

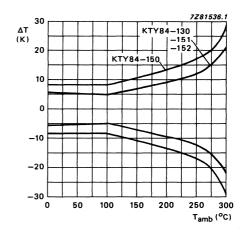


Fig. 5 Maximum expected temperature error Δ T.

These sensors have a positive temperature coefficient of resistance and are for use in measurement and control.

QUICK REFERENCE DATA

Resistance at T _{amb} = 25 °C		Type tape
		(identification colour)
IC = 1 mA		
	KTY85-110	$R_{25} = 990 - 1010 \Omega$; yellow
	KTY85-120	$R_{25} = 980 - 1020 \Omega$; white or green
	KTY85-121	$R_{25} = 980 - 1000 \Omega$; white
	KTY85-122	$R_{25} = 1000 - 1020 \Omega$; green
	KTY85-150	$R_{25} = 950 - 1050 \Omega$; black or blue
	KTY85-151	$R_{25} = 950 - 1000 \Omega$; black
	KTY85-152	$R_{25} = 1000 - 1050 \Omega$; blue
	KTY85-120	is composed of groups -121 and -122, and is correspondingly designated.
	KTY85-150	is composed of groups -151 and -152, and is correspondingly designated.
Operating ambient temperature range Tamb		-40 to +125 °C

MECHANICAL DATA

Dimensions in mm

Indication of polarity and type tape

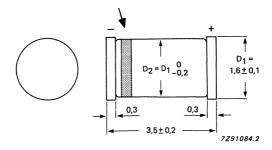


Fig. 1 SOD-80.

Note

The sensor has to be operated with the lower potential at the marked connection.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

 $T_{amb} = 25 \, ^{\circ}C$ 1c 10 mA max. $T_{amb} = 125 \, ^{\circ}C$ 2.0 mA max.

CHARACTERISTICS

(Based on the measurements in liquid at Tamb = 25 °C unless otherwise specified)

Resistance

Temperature coefficient typ.

Resistance ratio R100/R25 1.670 ± 0.020 0.577 ± 0.008 R-40/R25

Thermal time constant* in still air

in still liquid** in flowing liquid** Measuring temperature range

20 s typ. 1.0 s typ.

typ.

-40 to +125 °C

0.5 s

0.76 %/K

Inert liquid FC43 of 3M company.

The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.

T _{amb}	Resistance Ω
-40	577
-30	632
-20	691
-10	754
0	820
10	889
20	962
25	1000
30	1039
40	1118
50	1202
60	1288
70	1379
80	1472
90	1569
100	1670
110	1774
120	1882
125	1937

Ambient temperatures and corresponding resistance values of sensor ($I_C = 1mA$).

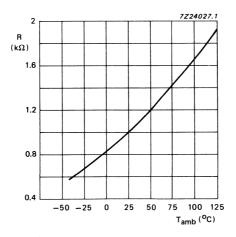


Fig. 2 Average resistance value of sensor at $I_C = 1$ mA as a function of ambient temperature.

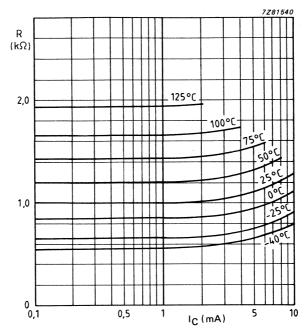


Fig. 3 Sensor resistance as a function of operating current.

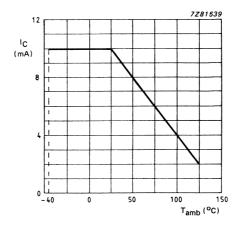


Fig. 4 Maximum operating current for safe operation.

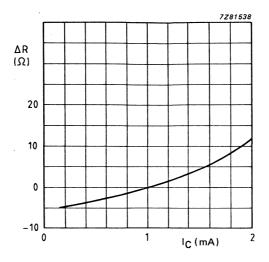


Fig. 5 Deviation of sensor resistance R as a function of operating current IC in still liquid; $T_{amb} = 25$ °C.

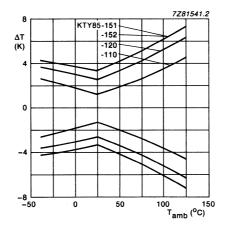


Fig. 6 Maximum expected temperature error ΔT .

These sensors are high accuracy temperature sensors with a positive temperature coefficient of resistance. Each sensor consists of a pair of 1000 Ω sensors in series and its main application fields are the measurement and control of temperature.

QUICK REFERENCE DATA

Resistance at T _{amb} = 25 °C			
I _C = 0.1 mA	KTY86-205	R ₂₅	2000 ± 10 Ω
Operating ambient temperature range		T _{amb}	-40 to + 150 °C

MECHANICAL DATA

Dimensions in mm

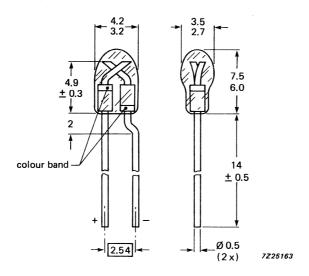


Fig. 1 VO-69; colour band is white.

Note

The sensor has to be operated with the lower potential at the bent lead.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

$T_{amb} = 25 ^{o}C$		lc	max.	10 mA
T _{amb} = 150 °C		IC	max.	2.0 mA

CHARACTERISTICS

(Based on the measurements in liquid at Tamb = 25 °C; IC = 0.1 mA unless otherwise specified).

(Based on the measurements in liquid at	1 amb = 25 °C; 1C = 0.1	mA unless oth	erwise specified).	
Resistance	KTY86-205 R	25 ⁼	2000 ± 10	Ω
Resistance ratio				
R ₁₀₀ °C/R ₂₅ °C			1.672 ± 0.020	
R ₋₄₀ °C/R ₂₅ °C			0.577 ± 0.008	
Temperature coefficient		α_40	0.93	%/K
		α25	0.76	%/K
		α100	0.61	%/K
Thermal time constant*				
in still air		typ.	30	S
in still liquid**		typ.	2.2	S
in flowing liquid**		typ.	1.7	S
Measuring temperature range			-40 to +150	oC
	Resistance Resistance ratio R100 °C/R25 °C R-40 °C/R25 °C Temperature coefficient Thermal time constant* in still air in still liquid** in flowing liquid**	Resistance KTY86-205 R Resistance ratio R100 °C/R25 °C R_40 °C/R25 °C Temperature coefficient Thermal time constant* in still air in still liquid** in flowing liquid**	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

^{*} The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.

^{**} Inert liquid FC43 of 3M company.

Tamb	Resistance
оС	Ω
-40	1154
–30	1265
-20	1383
–10	1508
0	1640
10	1779
20	1924
25	2000
30	2077
40	2237
50	2404
60	2578
70	2759
80	2947
90	3142
100	3344
110	3553
120	3769
130	3992
140	4222
150	4459

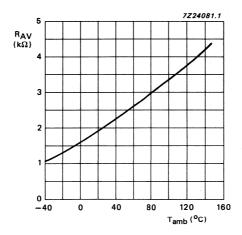


Fig. 2 Average resistance value of sensor at $I_C = 0.1$ mA as a function of ambient temperature.

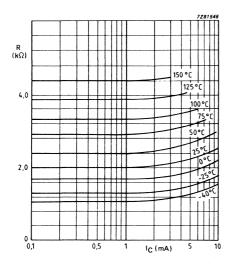


Fig. 3 Sensor resistance as a function of operating current.

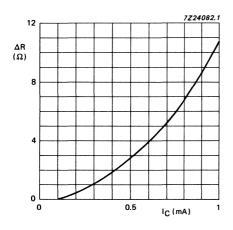


Fig. 5 Deviation of sensor resistance R versus operating current I_C in still liquid; $T_{amb} = 25 \, ^{\circ}C$.

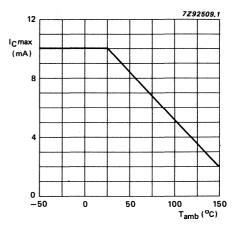


Fig. 4 Maximum operating current for safe operation.

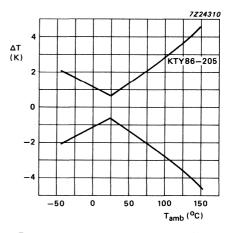


Fig. 6 Maximum expected temperature error ΔT .

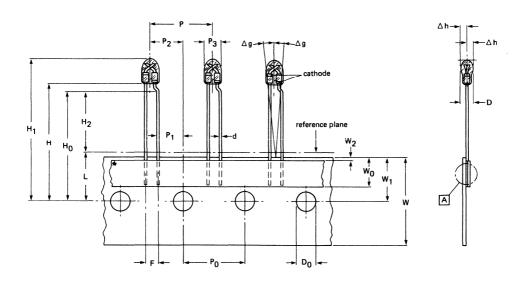


Fig. 7 Dimensions of product on tape.

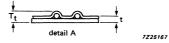
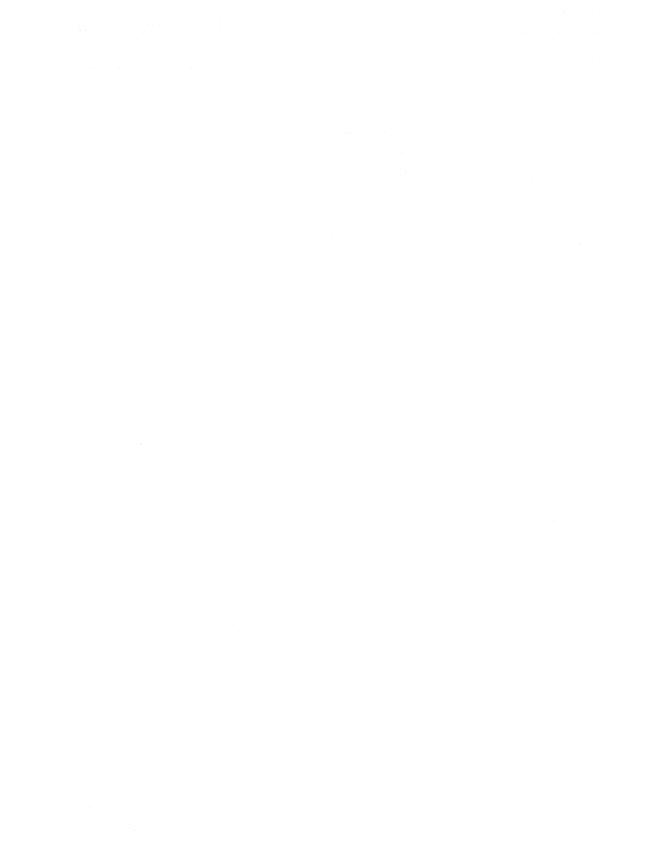



Table 1 Dimensions of product on tape

symbol	dimensions
D	2.7 - 3.5
D ₀	4.0 ± 0.2
d	0.48 - 0.56
F	2.54 + 0.4/-0.1
Δg	0 + 5°
Н	24.0 ± 1.0
Н0	22.0 ± 1.0
H ₁ \	32.5 max.
H ₂	11.0 ± 1.0
Δh	± 2.0
L	10.0 max.

dimensions
12.7 ± 1.0
12.7 ± 0.3
5.09 ± 0.7
5.95 ± 1.0
3.2 - 4.2
1.5 max.
0.7 ± 0.2
18.0 ± 1.0/—0.5
6.0 min.
9.0 ± 0.5
0 - 1.5

This data sheet contains advance information and specifications are subject to change without notice.

SILICON TEMPERATURE SENSORS

The KTY87 are high precision temperature sensors with a positive temperature coefficient of resistance for temperature measuring and temperature control.

QUICK REFERENCE DATA

Resistance at $I_C = 0.1 \text{ mA}$

 $T_{amb} = 25 \, ^{\circ}C$

T_{amb} = 100 °C

Operating temperature range

 $R_{25} = 2000 \pm 10 \Omega$ $R_{100} = 3344 \pm 17 \Omega$

-40 to +125 °C

MECHANICAL DATA

Dimensions in mm

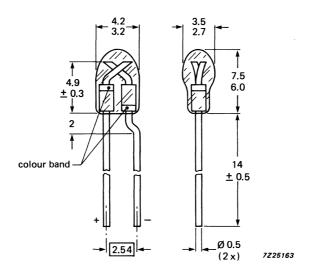


Fig. 1 VO-69; colour band is green.

Note

The sensor has to be operated with the lower potential at the bent lead.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous sensor current in free air

 T_{amb} = 25 °C I_{C} max. 10 mA T_{amb} = 125 °C I_{C} max. 2.0 mA

CHARACTERISTICS

(Based on the measurements in liquid at T_{amb} = 25 °C; I_C = 0.1 mA unless otherwise specified)

Resistance $R25 = 2000 \pm 10 \Omega$ $T_{amb} = 100 \, ^{\circ}C$ $R100 = 3344 \pm 17 \Omega$ at -40 °C 0.93 %/K Temperature coefficient at 25 °C 0.75 %/K at 100 °C 0.61 %/K Thermal time constant * in still air 30 s typ. in still liquid** 2.2 s typ. in flowing liquid** 1.7 s typ. -40 to +125 °C Operating temperature range

^{*} The thermal time constant is the time the sensor needs to reach 63.2% of the total temperature difference. For instance, the time needed to reach a temperature of 72.4 °C, when a sensor with an initial temperature of 25 °C is put into an ambient with a temperature of 100 °C.

^{**} Inert liquid FC43 of 3M company.

-	
T _{amb}	Resistance
оС	Ω
-40	1154
-30	1265
-20	1383
-10	1508
0	1640
10	1779
20	1924
25	2000
30	2077
40	2237
50	2404
60	2578
70	2759
80	2947
90	3142
100	3344
110	3553
120	3769
125	3880

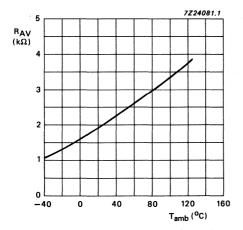


Fig. 2 Average resistance value of sensor at $I_C = 0.1$ mA as a function of ambient temperature.

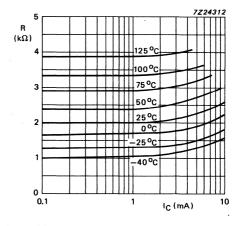


Fig. 3 Sensor resistance as a function of operating current.

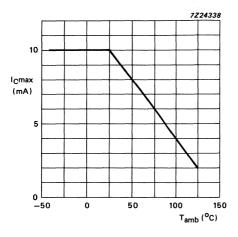


Fig. 4 Maximum operating current for safe operation.

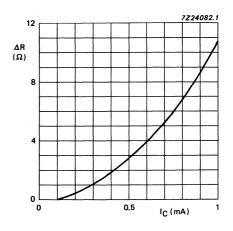


Fig. 5 Deviation of sensor resistance R versus operating current I_C in still liquid.

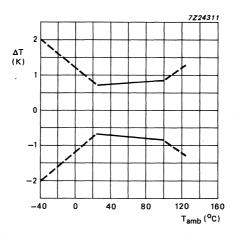


Fig. 6 Maximum temperature error ΔT .

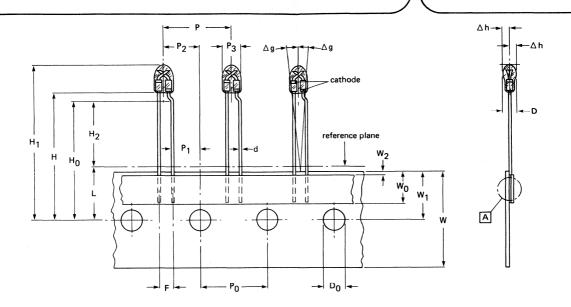


Table 1 Dimensions of product on tape

symbol	dimensions
D	2.7 — 3.5
D ₀	4.0 ±0.2
d	0.48 - 0.56
F	2.54 + 0.4/-0.1
Δg	0 +50
Н	24.0 ±1.0
Н0	22.0 ±1.0
H ₁	32.5 max
H ₂	11 ±1.0
Δh	±2.0
L	10.0 max
Р	12.7 ±1.0
P ₀	12.7 ±0.3
P ₁	5.09 ±0.7
P ₂	5.95 ±1.0
P ₃	3.2 - 4.2
Tt	1.5 max
t	0.7 ±0.2
W	18.0 + 1.0/-0.5
w _o	6.0 min
W ₁	9.0 ±0.5
W ₂	0 – 1.5

Fig. 7 Dimensions of product on tap.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

OM-	L x W mm (max.)	V _S V	I _O mA	false polarity protection	short-circuit/ overload prot.	R ₃ discr.	•
286	35,2 x 5	4,5 — 30	50 - 250*	supply	no	yes	no
287	35,2 x 5	4,5 — 30	50 - 250*	supply	no	yes	no
286M	22,6 x 5	4,5 - 30	50 - 250*	supply	no	yes	no
287M	22,6 x 5	4,5 - 30	50 - 250*	supply	no	yes	no
386B	43,6 x 5	10 - 30	250	supply/load	yes	yes	yes
387B	43,6 x 5	10 - 30	250	supply/load	yes	yes	yes
386M	22,5 x 5**	10 - 30	200	supply/load	yes	yes	yes
387M	22,5 x 5**	10 - 30	200	supply/load	yes	yes	yes
388B	25,6 × 8,2	10 - 30	250	supply/load	yes	yes	yes
389B	25,6 × 8,2	10 - 30	250	supply/load	yes	yes	yes

^{*} Depending upon supply voltage (for odd-numbered types: reverse polarity).

NOTE: The 300-series provide the possibility of directly connecting a LED for function control, without additional power dissipation.

^{**} After assembling.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

Hybrid integrated circuits intended for inductive proximity detectors in tubular construction, especially the M8 hollow stud. The OM286 and OM286M are for positive supply voltage and the OM287 and OM287M are for negative supply voltage. The circuit consists of an oscillator, a rectifier stage, a Schmitt trigger and an output stage. The circuit performs a make function: when actuated the current flows through the load, which can be e.g. the coil of an electromagnetic relay, a LED or a photocoupler.

The output transistor is protected against transients from the inductive load by a voltage regulator diode. The circuit is protected against false polarity connection of the supply voltage.

The devices OM286/OM287 are thick-film circuits and the OM287M/OM287M are thin-film circuits deposited on ceramic substrates. They may be potted, together with the oscillator coil and a resistor $(R_{\rm X})$, in a non-magnetic tube.

OUICK REFERENCE DATA

QUICK REFERENCE DATA		
D.C. supply voltage range	V _B	4,5 to 30 V
Output current at V _B = 24 V	Io	max. 250 mA
Operating (switching) distance (depends on R_X value and oscillator coil)	S	1 to 5 mm
Differential travel (hysteresis in switching distance)	н	3 to 10 %
Operating (switching) frequency	f	< 5 kHz
Operating substrate temperature range*	Ts	-40 to +85 °C
Substrate length of OM286 and OM287	L	35,0 ±0,2 mm
Substrate length of OM286M and OM287M	¹ 2. 1	22,4 ±0,2 mm
Substrate width	W	4,8 ±0,2 mm
Height of circuit including substrate	h	max. 1,7 mm

MECHANICAL DATA

Dimensions in mm

Fig. 1a and 1b (next page).

^{*} The tube, potting and connection materials are the main limiting factors for the operating temperature range of a completely assembled proximity detector.

MECHANICAL DATA

Dimensions in mm

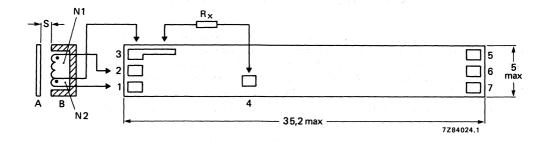


Fig. 1a OM286/OM287.

A = metal actuator
B = open potcore or
potcore half with coil

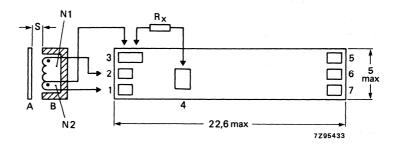


Fig. 1b OM286M/OM287M.

Mechanical outline and connections: note that the supply polarities to points 5 and 7 are given for the OM286 and OM286M; for the OM287 and OM287M the polarities are point 5: $-V_B$, and point 7: $+V_B$. S is the operating distance.

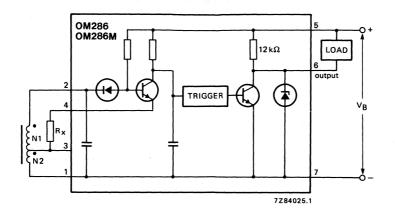


Fig. 2 Circuit diagram of OM286 and OM286M.

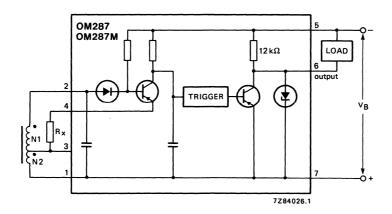


Fig. 3 Circuit diagram of OM287 and OM287M.

OM286/OM286M OM287/OM287M

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)		
D.C. supply voltage	VB	max.	30 V
Output current	l _o	max.	250 mA
Storage temperature	T _{stg}	-40 to	+125 °C
Operating substrate temperature	Ts	-40	to +85 °C
CHARACTERISTICS			
Conditions (unless otherwise specified)			
D.C. supply voltage	VB		24 V
External resistor (R_X) and oscillator coil Device embedded in brass tube	•	rating dis- able below	
Substrate temperature	T_{S}		25 °C
Performances			
Supply current output stage "ON"		tvp.	9,0 mA

Operating (switching) distance*

output stage "OFF"

Voltage drop $I_0 = 250 \text{ mA}$

 $I_0 = 10 \text{ mA}$

type	1	oscillator coil number of turns		operating		recommended potcore	oscillator frequency
	N1	N2	200	250	300		kHz
M8	32	16	1	1,5	_	φ 5,8 mm (Neosid)	800
M12	40	10	2	3	<u> </u>	P9 Philips**	600
M18	46	4	3	4	5	P14 Philips**	600

1B

 V_d

typ.

max.

max.

7,7 mA

1 V

0,25 V

IVI I O	40	4	3	4	5	F14F	umbs	000		
Differential	travel (in %	of S)				Н		3 to 10	%	
Operating fro	equency (ac	cording to E	EN 50010)			f	<	5	kHz	

* The operating distance S depends on the oscillator coil, the material of the metal actuator and R_X. For measuring purposes a square steel sheet (St 37) with dimensions such that a circle with the diameter of the core can be inscribed, and 1 mm thickness can be used. R_X must not be chosen outside the range of 200 to 300 Ω . Influence of supply voltage: $-1 \,\mu$ m/V for V_B = 15 to 30 V.

Temperature coefficient of S:

M8: 0,2 %/K M12: 0,17 %/K M18: 0,1 %/K

** Grade 3B7/3H1.

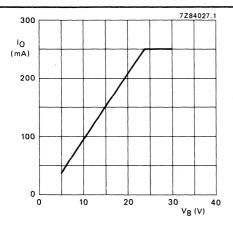


Fig. 4 Maximum allowable output current as a function of supply voltage; $T_S = 25$ °C.

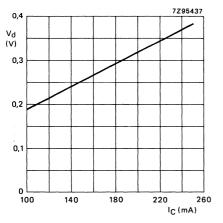
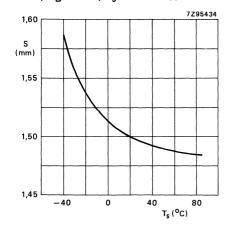



Fig. 6 Voltage drop as a function of output current; $V_B = 24 \text{ V}$; $T_S = 25 \text{ °C}$; typical values.

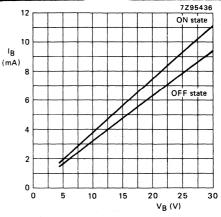


Fig. 5 Supply current as a function of supply voltage; $T_s = 25$ °C; typical values.

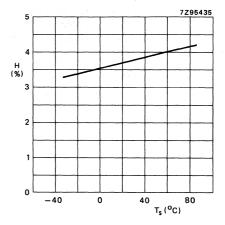
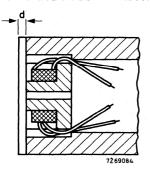



Fig. 7 Hysteresis as a function of substrate temperature; typical values.

Potcore ϕ 5,8 mm Neosid osc. coil N1 = 32, N2 = 16 turns R_X = 200 Ω .

Fig. 8 Operating distance as a function of substrate temperature.

MOUNTING RECOMMENDATIONS

If a protective cap is incorporated, it should be as thin as possible, because its thickness d forms part of the operating distance S.

A brass stud wall should not extend beyond the potcore. The exact value of S with its spread is determined by a number of variables, e.g.

- value of the adjustment resistor Rx
- the oscillator coil
- the metal of the actuator
- the material and shape of the housing.

Fig. 9 Insertion of potcore in brass tube.

Soldering recommendations

Use normal 60/40 solder; use a soldering iron with a fine point; soldering time as short as possible and it should not exceed 2,5 s per soldering point ($T_{sld} = max. 250 \, ^{\circ}C$).

The substrate is preferably preheated to a temperature of 100 °C with a minimum of 80 °C and a maximum of 125 °C.

Potting recommendations

First cover the hybrid IC with about 0,5 mm of silicone rubber, let it harden and, with the parts inserted in the tube, fill up the tube with an epoxy.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

Hybrid integrated circuits intended for inductive proximity detectors in tubular construction, especially the M8 hollow stud. The OM386B is for positive supply voltage and the OM387B is for negative supply voltage. The circuit consists of a voltage regulator, an oscillator, a rectifier stage, a Schmitt trigger, an output stage and a protection circuit.

The circuit performs a make function: when actuated the current flows through the load, which can be e.g. the coil of an electromagnetic relay, a LED or a photocoupler.

Features:

- protection against short-circuit and overload
- protection of output transistor against transients by a voltage regulator diode
- protection against false polarity of the three connection leads
- choice between two methods to adjust the operating (switching) distance i.e. trimming a resistor integrated on the substrate or mounting a resistor
- possibility of connecting a LED for function control

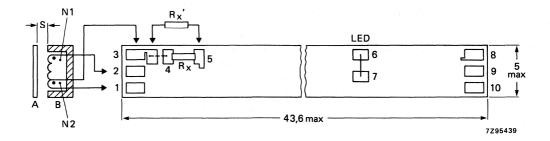
The devices are thin-film circuits deposited on ceramic substrates. They may be potted, together with the oscillator coil, in a non-magnetic tube.

QUICK REFERENCE DATA

D.C. supply voltage range	V _B	10 to 30 V
Output current at V _B = 10 to 30 V	Io	max. 250 mA
Operating (switching) distance (depends on R _X value and oscillator coil)	S	1 to 5 mm
Differential travel (hysteresis in switching distance)	н	3 to 10 %
Operating (switching) frequency	f	< 5 kHz
Operating substrate temperature range*	Ts	-40 to +85 °C
Substrate length	L	43,4 ±0,2 mm
Substrate width	W	4,8 ±0,2 mm
Height of circuit including substrate	h	max. 1,7 mm

MECHANICAL DATA

Dimensions in mm


Fig. 1 (see next page).

^{*} The tube, potting and connection materials are the main limiting factors for the operating temperature range of a completely assembled proximity detector.

MECHANICAL DATA (outline and connections)

Dimensions in mm

Fig. 1.

A = metal actuator; B = open potcore or potcore half with coil.

Mechanical outline and connections: note that the supply polarities to points 8 and 10 are given for the OM386B; for the OM387B the polarities are point 8: $-V_B$, and point 10: $+V_B$.

S is the operating distance.

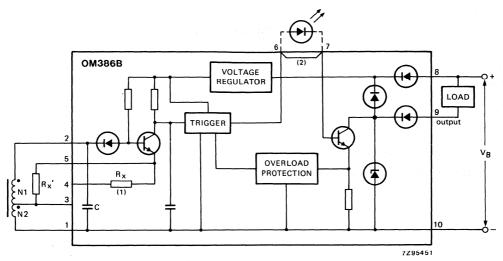


Fig. 2 Circuit diagram of OM386B.

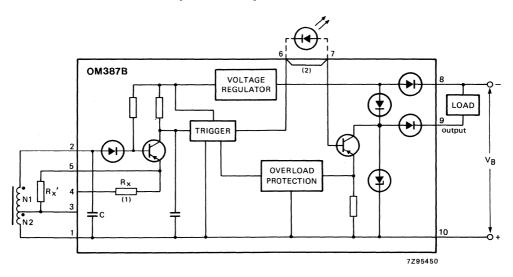


Fig. 3 Circuit diagram of OM387B.

- (1) R_X is integrated on the substrate and suitable for trimming (laser or sandblasting). To use integrated resistance R_X it is necessary to connect point 3 to 4.
- (2) If a LED is to be connected, the jumper between points 6 and 7 should be removed.

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
D.C. supply voltage	VB	max.	30	٧
Output current	lo	max.	250	mΑ
Storage temperature	T _{stg}	-40 to	+125	oC
Operating substrate temperature	Ts	-40	to +85	oC
CHARACTERISTICS				
Conditions (unless otherwise specified)				
D.C. supply voltage	v _B		24	٧
External resistor (R_X) and oscillator coil Device embedded in brass tube		rating dis- able below		
Substrate temperature	T_{S}		25	oC
Performances				
Supply current output stage "ON" output stage "OFF"	IB	typ. typ.		mA mA
Voltage drop $I_0 = 250 \text{ mA}$ $I_0 = 10 \text{ mA}$	V _d	max. max.	1,9 1,0	

Operating ((switching)	distance*
-------------	-------------	-----------

type		scillator coil Imber of turns		operating mm at R		recommended potcore	oscillator frequency	
	N1	N2	200	250	300	·	kHz	
M8	32	16	1	1,5	_	φ 5,8 mm (Neosid)	800	
M12	40	10	2	3	-,	P9 Philips**	600	
M18	46	4	3	4	5	P14 Philips**	600	
Differenti	ial travel (in %	of S)				Н	3 to 10 %	
Operating	frequency (a	f <	5 kHz					

^{*} The operating distance S depends on the oscillator coil, the material of the metal actuator and R χ . For measuring purposes a square steel sheet (St 37) with dimensions such that a circle with the diameter of the core can be inscribed, and 1 mm thickness can be used. R $_{\chi}$ must not be chosen outside the range of 200 to 300 Ω .

^{**} Grade 3B7/3H1.

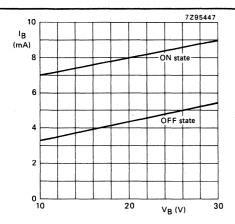


Fig. 4 Supply current as a function of supply voltage; $T_S = 25$ °C.

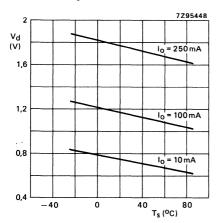
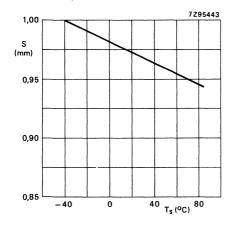



Fig. 6 Voltage drop as a function of substrate temperature.

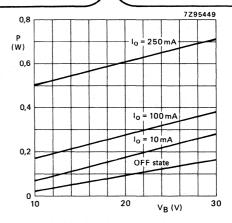


Fig. 5 Power dissipation as a function of supply voltage.

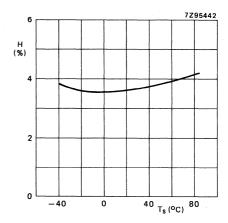
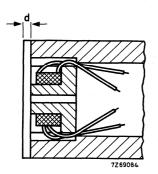



Fig. 7 Hysteresis as a function of substrate temperature.

Conditions relating to Figs 7 and 8: potcore ϕ 5,8 mm Neosid osc. coil N1 = 32, N2 = 16 turns $R_X = 200 \Omega$.

Fig. 8 Operating distance as a function of substrate temperature.

MOUNTING RECOMMENDATIONS

If a protective cap is incorporated, it should be as thin as possible, because its thickness d forms part of the operating distance S.

A brass stud wall should not extend beyond the potcore. The exact value of S with its spread is determined by a number of variables, e.g.

- value of the adjustment resistor Rx
- the oscillator coil
- the metal of the actuator
- the material and shape of the housing.

Fig. 9 Insertion of potcore in brass tube.

Soldering recommendations

Use normal 60/40 solder; use a soldering iron with a fine point; soldering time as short as possible and it should not exceed 2,5 s per soldering point ($T_{sld} = max. 250 \, ^{\circ}C$).

The substrate is preferably preheated to a temperature of 100 °C with a minimum of 80 °C and a maximum of 125 °C.

Potting recommendations

First cover the hybrid IC with about 0,5 mm of silicone rubber, let it harden and with the parts inserted in the tube, fill up the tube with an epoxy.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

Hybrid integrated circuits intended for inductive proximity detectors in tubular construction, especially the M8 hollow stud. The OM386M is for positive supply voltage and the OM387M is for negative supply voltage. The circuit consists of a voltage regulator, an oscillator, a rectifier stage, a Schmitt trigger, an output stage and a protection circuit.

The circuit performs a make function: when actuated the current flows through the load, which can be e.g. the coil of an electromagnetic relay, a LED or a photocoupler.

Compared to the types OM386B/OM387B the substrate length is drastically reduced.

Features:

- extra-small dimensions
- protection against short-circuit and overload
- protection of output transistor against transients by a voltage regulator diode
- protection against false polarity of the three connection leads
- choice between two methods to adjust the operating (switching) distance i.e. trimming a resistor integrated on the substrate or mounting a resistor
- possibility of connecting a LED for function control

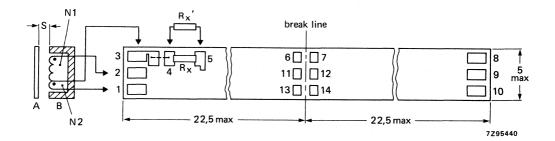
The devices are thin-film circuits deposited on ceramic substrates. They may be potted, together with the oscillator coil, in a non-magnetic tube.

QUICK REFERENCE DATA

D.C. supply voltage range	VB	10	to 30 V
Output current at V _B = 10 to 30 V	lo	max.	200 mA
Operating (switching) distance (depends on R_X value and oscillator coil)	S		1 to 5 mm
Differential travel (hysteresis in switching distance)	Н	3	to 10 %
Operating (switching) frequency	f	<	5 kHz
Operating substrate temperature range*	T_S	-40	to +85 °C
Substrate length after assembly	L	22,	3 ±0,2 mm
Substrate width	W	4,	8 ±0,2 mm
Thickness of assembled hybrid (two parts glued together back to back)	h	max.	3,8 mm

MECHANICAL DATA

Dimensions in mm


Fig. 1 (see next page).

^{*} The tube, potting and connection materials are the main limiting factors for the operating temperature range of a completely assembled proximity detector.

MECHANICAL DATA (outline and connections)

Dimensions in mm

Fig. 1.

A = metal actuator; B = open potcore or potcore half with coil.

Mechanical outline and connections: note that the supply polarities to points 8 and 10 are given for the OM386M; for the OM387M the polarities are point 8: $-V_B$, and point 10: $+V_B$.

S is the operating distance.

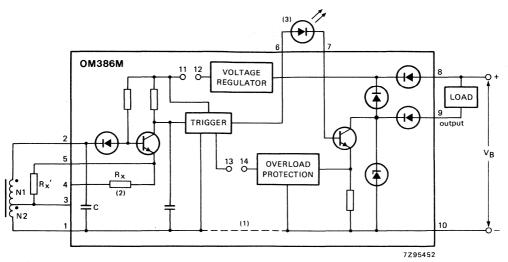


Fig. 2 Circuit diagram of OM386M.

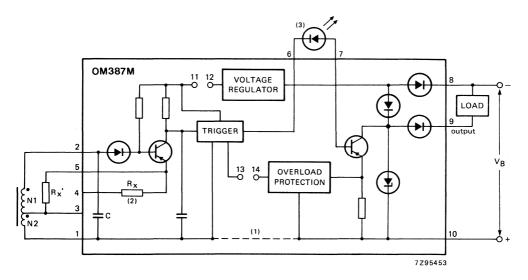


Fig. 3 Circuit diagram of OM387M.

- (1) Connect point 1 to point 10 after assembling.
- (2) R_X is integrated on the substrate and suitable for trimming (laser or sandblasting). To use integrated resistance R_X it is necessary to connect point 3 to 4.
- (3) If no LED is used, connect point 6 to point 7.

RATINGS

D.C. supply voltage	VB	max.	30 V
Output current	10	max.	200 mA
Storage temperature	T_{stg}	-40 to	+125 °C
Operating substrate temperature	T_{S}	-40	to +85 °C
CHARACTERISTICS			
Conditions (unless otherwise specified)			
D.C. supply voltage	VB		24 V
External resistor (R_X) and oscillator coil Device embedded in brass tube	•	rating dis- ble below	
Substrate temperature	T_{S}		25 °C

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Performances

Performances			
Supply current output stage "ON" output stage "OFF"	IB	typ. typ.	7,4 mA 4,8 mA
Voltage drop $I_0 = 200 \text{ mA}$ $I_0 = 10 \text{ mA}$	v_d	max. max.	1,9 V 1,0 V
Operating (switching) distance*			

type		oscillator coil number of turns		average operating distance S in mm at $R_X(\Omega)$		nce recommended oscillator potcore frequence		
	N1	N2	200	250	300		kHz	
M8	32	16 1	16	1	1,5	- φ 5,8 mm (Neosid)	7 -/-	800
M12	40	10	2	3	-	P9 Philips**	600	
M18	46	4	3	4	5	P14 Philips**	600	
Differenti	al travel (in %	Н	3 to 10 %					
Operating	frequency (a	f <	5 kH					

^{*} The operating distance S depends on the oscillator coil, the material of the metal actuator and R χ . For measuring purposes a square steel sheet (St. 37) with dimensions such that a circle with the diameter of the core can be inscribed, and 1 mm thickness can be used. R $_{\chi}$ must not be chosen outside the range of 200 to 300 Ω .

^{**} Grade 3B7/3H1.

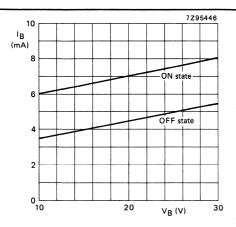


Fig. 4 Supply current as a function of supply voltage; $T_S = 25$ °C.

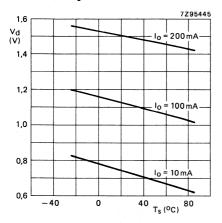
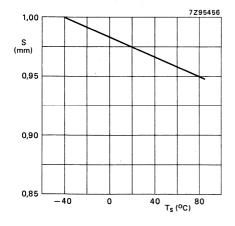



Fig. 6 Voltage drop as a function of substrate temperature.

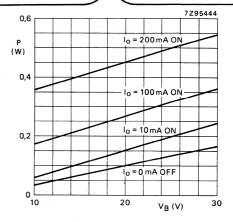


Fig. 5 Power dissipation as a function of supply voltage.

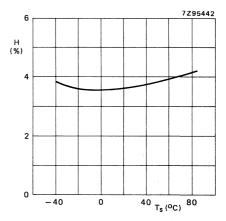


Fig. 7 Hysteresis as a function of substrate temperature.

Conditions relating to Figs 7 and 8: potcore ϕ 5,8 mm Neosid osc. coil N1 = 32, N2 = 16 turns R_X = 200 Ω .

Fig. 8 Operating distance as a function of substrate temperature.

MOUNTING RECOMMENDATIONS

- A. Assembling and connecting the two half substrates:
 - Use the breakline to break the substrate in two pieces.
 - Apply glue (e.g. epoxy Ablebond 293-1) to the blank sides of the two parts.
 - After hardening of the glue connect the pads according to Fig. 9.

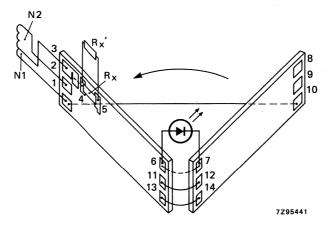


Fig. 9 If no LED is used, connect point 6 to point 7; connect points 11 and 12, point 13 to 14 and point 1 to point 10.

B. If a protective cap is incorporated, it should be as thin as possible, because its thickness d forms part of the operating distance S.

A brass stud wall should not extend beyond the potcore. The exact value of S with its spread is determined by a number of variables, e.g.

- value of the adjustment resistor Rx
- the oscillator coil
- the metal of the actuator
- the material and shape of the housing.

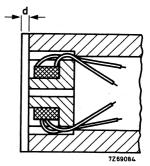


Fig. 10 Insertion of potcore in brass tube.

Soldering recommendations

Use normal 60/40 solder; use a soldering iron with a fine point; soldering time as short as possible and it should not exceed 2,5 s per soldering point (T_{sld} = max. 250 °C).

Potting recommendations

First cover the hybrid IC with about 0,5 mm of silicone rubber, let it harden and with the parts inserted in the tube, fill up the tube with an epoxy.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

Hybrid integrated circuits intended for inductive proximity detectors in tubular construction, especially the M12 hollow stud. The OM388B is for positive supply voltage and the OM389B is for negative supply voltage. The circuit consists of a voltage regulator, an oscillator, a rectifier stage, a Schmitt trigger, an output stage and a protection circuit.

The circuit performs a make function: when actuated the current flows through the load, which can be e.g. the coil of an electromagnetic relay, a LED or a photocoupler.

Features:

- protection against short-circuit and overload
- protection of output transistor against transients by a voltage regulator diode
- protection against false polarity of the three connection leads
- choice between two methods to adjust the operating (switching) distance i.e. trimming a resistor integrated on the substrate or mounting a resistor
- possibility of connecting a LED for function control

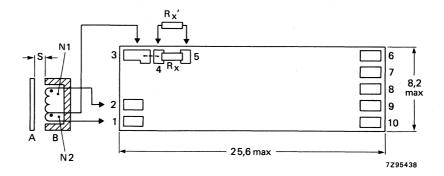
The devices are thin-film circuits deposited on ceramic substrates. They may be potted, together with the oscillator coil, in a non-magnetic tube.

QUICK REFERENCE DATA

COTON TELEVISION DATA			
D.C. supply voltage range	VB	10 1	o 30 V
Output current at V _B = 10 to 30 V	Io	max.	250 mA
Operating (switching) distance (depends on R _X value and oscillator coil)	S	2	to 5 mm
Differential travel (hysteresis in switching distance)	Н	3 1	to 10 %
Operating (switching) frequency	f	<	5 kHz
Operating substrate temperature range*	T_S	-40 to	+85 °C
Substrate length	L	25,4	±0,2 mm
Substrate width	W	8,0	±0,2 mm
Height of circuit including substrate	h	max.	1,7 mm

MECHANICAL DATA

Dimensions in mm


Fig. 1 (see next page).

^{*} The tube, potting and connection materials are the main limiting factors for the operating temperature range of a completely assembled proximity detector.

MECHANICAL DATA (outline and connections).

Dimensions in mm

Fig. 1.

A = metal actuator; B = open potcore or potcore half with coil.

Mechanical outline and connections: note that the supply polarities to points 8 and 10 are given for the OM388B; for the OM389B the polarities are point 8: -VB and point 10: +VB.

S is the operating distance.

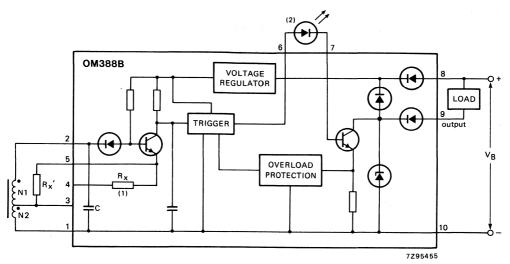


Fig. 2 Circuit diagram of OM388B.

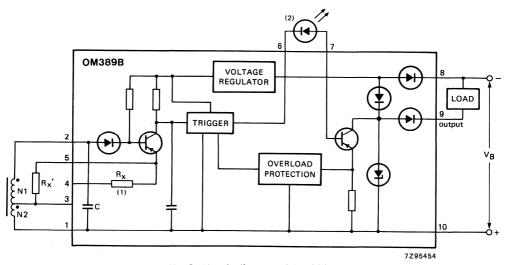


Fig. 3 Circuit diagram of OM389B.

- (1) R_X is integrated on the substrate and suitable for trimming (laser or sandblasting). To use integrated resistance R_X it is necessary to connect point 3 to 4.
- (2) If no LED is used, point 6 is to be connected to point 7.

OM388B OM389B

RATINGS

D.C. supply voltage	VB	max.	30 V
Output current	lo	max.	250 mA
Storage temperature	T _{stg}	-40 to	+125 °C
Operating substrate temperature	T_{s}	-40 t	o +85 °C
CHARACTERISTICS			
Conditions (unless otherwise specified)			
D.C. supply voltage	VB		24 V
External resistor $(R\chi)$ and oscillator coil Device embedded in brass tube	•	erating dis- able below	
Substrate temperature	Ts		25 °C
Performances			
Supply current output stage "ON"	lo.	typ.	8,4 mA

Limiting values in accordance with the Absolute Maximum System (IEC 134)

I_O = 10 mA Operating (switching) distance*

output stage "OFF"

Voltage drop I_O = 250 mA

Operating	(switching)	istance		100	4 to 3	<u>and the state of </u>	
type		tor coil of turns N2	average operating distance S in mm at R_X (Ω) 200 250 300		recommended potcore	oscillator frequency kHz	
M12	40	10	2	3		P9 Philips**	600
M18	46	4	3	4	5	P14 Philips**	600
Differenti	ial travel (in %	6 of S)	•			Н	3 to 10 %
Operating	frequency (a	ccording to	f <	5 kHz			

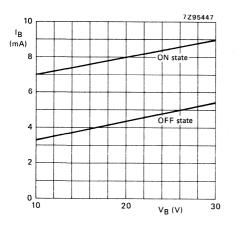
1B

 V_d

typ.

max.

max.


4,8 mA

1,9 V

1,0 V

^{*} The operating distance S depends on the oscillator coil, the material of the metal actuator and R_X. For measuring purposes a square steel sheet (St 37) with dimensions such that a circle with the diameter of the core can be inscribed, and 1 mm thickness can be used. R_X must not be chosen outside the range of 200 to 300 Ω .

^{**} Grade 3B7/3H1.

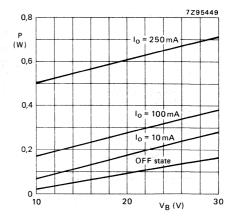


Fig. 4 Supply current as a function of supply voltage; $T_S = 25$ °C.

Fig. 5 Power dissipation as a function of supply voltage.

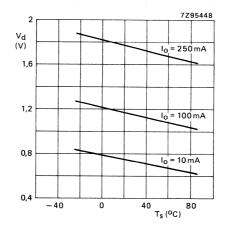
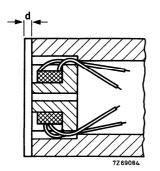



Fig. 6 Voltage drop as a function of substrate temperature.

MOUNTING RECOMMENDATIONS

If a protective cap is incorporated, it should be as thin as possible, because its thickness d forms part of the operating distance S.

A brass stud wall should not extend beyond the potcore. The exact value of S with its spread is determined by a number of variables, e.g.

- value of the adjustment resistor Rx
- the oscillator coil
- the metal of the actuator
- the material and shape of the housing.

Fig. 7 Insertion of potcore in brass tube.

Soldering recommendations

Use normal 60/40 solder; use a soldering iron with a fine point; soldering time as short as possible and it should not exceed 2,5 s per soldering point ($T_{sld} = max. 250 \, ^{\circ}C$).

The substrate is preferably preheated to a temperature of 100 °C with a minimum of 80 °C and a maximum of 125 °C.

Potting recommendations

First cover the hybrid IC with about 0,5 mm of silicone rubber, let it harden and with the parts inserted in the tube, fill up the tube with an epoxy.

HYBRID INTEGRATED CIRCUITS FOR INDUCTIVE PROXIMITY DETECTORS

Hybrid integrated circuits intended for inductive proximity detectors in tubular construction, especially the M18 hollow stud. The OM390 is for positive supply voltage and the OM391 is for negative supply voltage. The circuit consists of a voltage regulator, an oscillator, a rectifier stage, a Schmitt trigger, an output stage and a protection circuit.

The circuit performs a make function: when actuated the current flows through the load, which can be e.g. the coil of an electromagnetic relay, a LED or a photocoupler.

Features:

- Protection against short-circuit and overload
- Protection of output transistor against transients by a voltage regulator diode
- Protection against false polarity of the three connection leads
- Choice between two methods to adjust the operating (switching) distance i.e. trimming a resistor integrated on the substrate or mounting a resistor
- Possibility of connecting a LED for function control

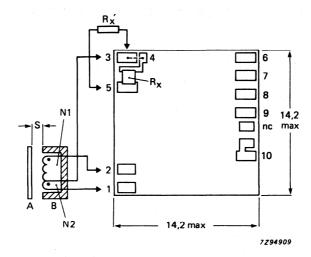
The devices are thin-film circuits deposited on ceramic substrates. They may be potted, together with the oscillator coil, in a non-magnetic tube.

QUICK REFERENCE DATA

D.C. supply voltage range	VB	10 to 30 V
Output current at V _B = 10 to 30 V	Io	max. 250 mA
Operating (switching) distance (depends on R _X value and oscillator coil)	S	2 to 5 mm
Differential travel (hysteresis in switching distance)	н	3 to 10 %
Operating (switching) frequency	f	< 5 kHz
Operating substrate temperature range*	T_{S}	-40 to +85 °C
Substrate length	L	14,0 ±0,2 mm
Substrate width	W	14,0 ±0,2 mm
Height of circuit including substrate	h	max. 1,7 mm

MECHANICAL DATA

Dimensions in mm


Fig. 1 (see next page).

^{*} The tube, potting and connection materials are the main limiting factors for the operating temperature range of a completely assembled proximity detector.

MECHANICAL DATA (outline and connections).

Dimensions in mm

Fig. 1.

A = metal actuator; B = open potcore or potcore half with coil. S is the operating distance.

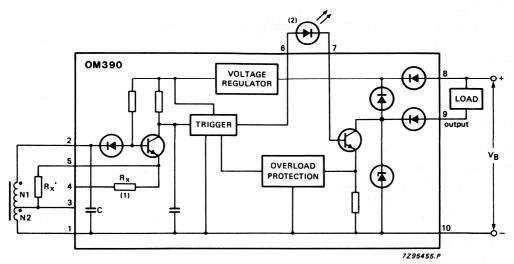


Fig. 2 Circuit diagram of OM390.

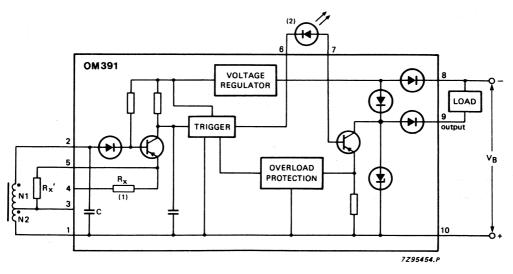


Fig. 3 Circuit diagram of OM391.

- R_X is integrated on the substrate and suitable for trimming (laser or sandblasting). To use integrated resistance R_X it is necessary to connect point 3 to 4.
- (2) If no LED is used, point 6 is to be connected to point 7.

RATINGS

D.C. supply voltage	VΒ	max.	30	V
Output current	lo	max.	250	mΑ
Storage temperature	Tstg	-40 to	o +125	oC
Operating substrate temperature	Ts	-40	to +85	oC
CHARACTERISTICS				
Conditions (unless otherwise specified)				
D.C. supply voltage	VB		24	٧
External resistor (R_X) and oscillator coil Device embedded in brass tube	see operating dis- tance table below			
Substrate temperature	T_{S}		25	oC
Performances				
Supply current output stage "ON"	lo.	typ.	8,4	mA

IB

 V_d

typ.

max.

max.

4,8 mA

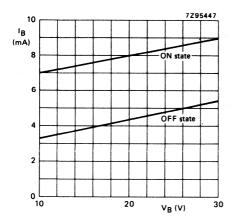
1,9 V

1,0 V

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Operating (switching) distance*

output stage "OFF"


Voltage drop I_O = 250 mA

 $I_0 = 10 \, \text{mA}$

type	oscillator coil		average operating distance S in mm at $R_X(\Omega)$			recommended potcore		oscillator frequency	
	N1	N2	200	250 ^	300		-	kHz	
M18	46	4	3	4	5	P14 Philips**		600	
Differenti	ial travel (in %	of S)				н		3 to 10 %	
Operating frequency (according to EN 50010)				f	<	5 kH			

^{*} The operating distance S depends on the oscillator coil, the material of the metal actuator and R_X. For measuring purposes a square steel sheet (St 37) with dimensions such that a circle with the diameter of the core can be inscribed, and 1 mm thickness can be used. R_X must not be chosen outside the range of 200 to 300 Ω.

^{**} Grade 3B7/3H1.

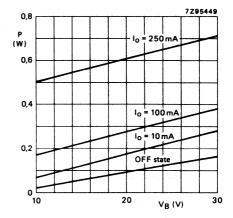


Fig. 4 Supply current as a function of supply voltage; $T_s = 25$ °C.

Fig. 5 Power dissipation as a function of supply voltage.

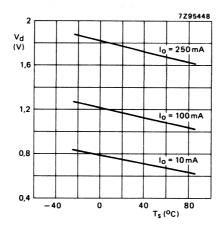
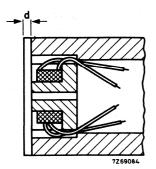



Fig. 6 Voltage drop as a function of substrate temperature.

MOUNTING RECOMMENDATIONS

If a protective cap is incorporated, it should be as thin as possible, because its thickness d forms part of the operating distance S.

A brass stud wall should not extend beyond the potcore. The exact value of S with its spread is determined by a number of variables, e.g.

- value of the adjustment resistor Rx
- the oscillator coil
- the metal of the actuator
- the material and shape of the housing.

Fig. 7 Insertion of potcore in brass tube.

Soldering recommendations

Use normal 60/40 solder; use a soldering iron with a fine point; soldering time as short as possible and it should not exceed 2,5 s per soldering point ($T_{sld} = max. 250 \, ^{\circ}C$).

The substrate is preferably preheated to a temperature of 100 °C with a minimum of 80 °C and a maximum of 125 °C.

Potting recommendations

First cover the hybrid IC with about 0,5 mm of silicone rubber, let it harden and with the parts inserted in the tube, fill up the tube with an epoxy.

QUICK SELECTION GUIDE

Device	Spectral Response	Typ peak Signal (500K)	Noise (0.4 to 5 Hz bandwidth)	Outline	Page		
	μm	μV typ	μV p-p typ				
KRX10	6.5 to 14	900	25	SIL	197		
KRX11	6.0 to 14	900	30	SIL	203		
P2105	1.0 to 25			SOT49G	209		
RPW100	6.5 to 14	800	25	TO-39	215		
RPW101	6.5 to 14	800	25	SOT49M	221		
RPW102	6.5 to 14	800	25	TO-39	227		
RPY100	6.5 to 14	460	20	TO-39	233		
RPY102	6.5 to 14	460	15	TO-39	241		
RPY107	1.0 to 15	385	15	TO-39	249		
RPY109	1.0 to 15	385	15	TO-39	257		
RPY222	6.5 to 15	800	25	TO-39	265		
RPY97	maintenance type only. Data sheet available on request.						

FUNDAMENTALS OF PYROELECTRICITY

TGS (triglycine sulphate) sensors are very sensitive thermal infrared devices which operate at room temperature without the need for cooling.

Operation of a TGS infrared sensor is based on the pyroelectric effect. Below a temperature known as the Curie point, ferroelectric materials such as TGS exhibit a large spontaneous electrical polarization. If the temperature of such a material is altered, for example by incident radiation, the polarization changes (see Fig.1).

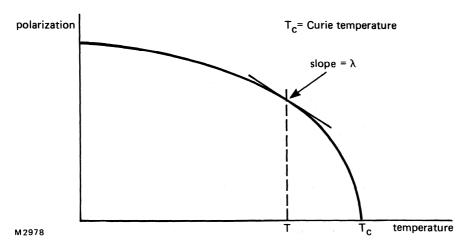


Fig.1 Polarization as a function of temperature.

Being dielectric with a high impedance the TGS material is formed into a sensing element by depositing electrodes on opposite faces of a thin slice of the material to form a capacitor. When the polarization changes, the charges induced on the electrodes can be made to produce a voltage across the slice if the external impedance is comparatively high. Hence the TGS element is normally operated in conjunction with a Field Effect Transistor, as in Fig.3, with a gate leakage resistance R or Z_g of the order of $10^{11}~\Omega$.

TGS INTRODUCTORY

The theroretical voltage responsivity (in volts/watt) first derived by Cooper¹, of such a pyroelectric sensor, is given by:—

$$R_{V} = \eta \, \frac{(\omega \lambda AR)}{G} \, (1 + \omega^{2} \, \tau_{T}^{2})^{-\frac{1}{2}} \, (1 + \omega^{2} \, \tau_{E}^{2})^{-\frac{1}{2}}$$
 Eqn (1)

where η is the fraction of incident radiation absorbed, λ the pyroelectric coefficient, A the area of the electrodes, R the electrical resistance and G the thermal conductance coupling the element to its surroundings.

In equation (1) $\tau_T = \frac{H}{G}$, the thermal time constant and $\tau_E = RC$, the electrical time constant. H and C are the thermal and electrical capacitances respectively.

The responsivity exhibits a frequency dependence as illustrated in Fig.2.

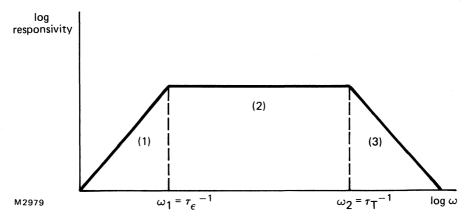


Fig.2 Responsivity as a function of ω for a theoretical sensor.

Because the electrical and thermal time constants are normally made long to maximize sensitivity, regions (1) and (2) occur at very low frequencies (<1 Hz). Consequently sensors are usually operated in region (3) where the responsivity falls linearly with frequency. In this region the equation for responsivity simplifies to:—

$$R_{V} = \frac{1.8 \times 10^{12} \eta \lambda}{f \in A_{\rho}C_{V}}$$
 Eqn (2)

where ρ is the density of the material, ϵ its relative permittivity and C_V its constant volume specific heat. If desired, a flat frequency response can be recovered by following the sensor with an amplifier having gain proportional to frequency (f).

Typical values of $\tau_{\rm E}$ and $\tau_{\rm T}$ for sensors designed to operate in the 10 to 100 Hz region would be:—

 $au_{\rm E}$ — usually in the range 0.2 to 10 s (dependent on element size and FET gate resistor) $au_{\rm T}$ — 150 to 200 ms

Ref. 1 Cooper, J. 1962 Rev. Sci. Instrum., 33, 92.

With some sensors, the gate leakage path is provided by a pair of low leakage diodes connected in anti-parallel (Philips patent). These enable $\tau_{\rm E}$ to progressively decrease under increasing conditions of signal overload, resulting in a rapid recovery when the source of overload is removed.

For sensors required to have a greater power handling capability, e.g. for use in Fourier transform spectrometers, the element mounting is designed to give much shorter values for τ_T .

From equation (2) it is apparent that responsivity is inversely proportional to element area — the smaller the element, the larger the responsivity. If the element is illuminated by a uniform energy flux, then it follows that the signal from the device is independent of the element area — halving the element size halves the energy on the element and results, from a doubling of the responsivity, in the same signal level.

NOISE IN PYROELECTRIC SENSORS

A pyroelectric element has a very high impedance (of the order of $10^{11} \Omega$) and in order to be able to make use of the device easily it is almost invariably coupled with a J-FET having a high input-impedance but a low output impedance (Fig.3).

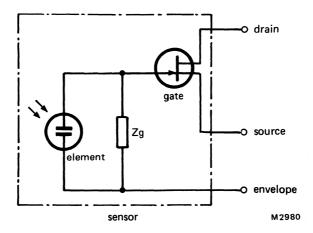


Fig.3 Sensor circuit.

Since the FET is a source of noise, the choice of FET is normally left to the sensor manufacturer and forms part of the integral structure of the sensor.

TGS INTRODUCTORY NOTES

The noise from a sensor can exhibit three distinct regions as a function of frequency (Fig.4).

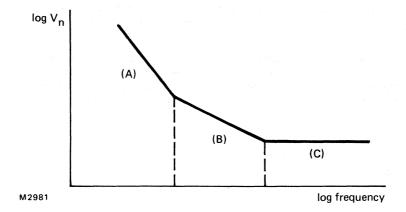


Fig.4 Noise as a function of frequency.

Regions A and C result from various noise sources in the FET and its associated components. Region B is caused by the loss conductance of the element itself in the form of Johnson noise.

If, as is usual, the sensor is being operated in region 3 of the responsivity curve, then the resulting noise equivalent power (NEP, a measure of the noise to signal ratio) varies with frequency as shown in Fig.5.

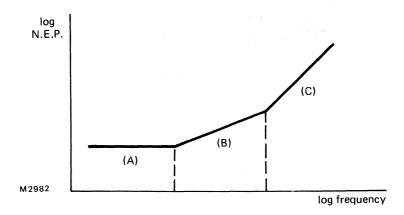


Fig.5 N.E.P. as a function of frequency.

It should be noted that the limits of the low, intermediate and high frequency regions vary; they depend on the design of the amplifier and on the loss conductance of the particular element.

TGS MATERIAL EVOLUTION

Triglycine sulphate - TGS

As already mentioned, TGS, below its Curie temperatue, exhibits a large electrical polarization which is temperature dependent. The form of the polarization/temperature curve is illustrated in Fig.1.

The pyroelectric coefficient is defined as $\lambda = \frac{dP}{dT}$, the slope of the curve at a given temperature.

Pure TGS has a Curie temperature of 49 °C. In the early phase of the development of these sensors this was quickly proved to be a fundamental problem because, if a sensor was taken to a temperature above its Curie point, the material depolarized and its sensitivity was lost. In fact, sensors proved to be unstable even below the Curie temperature with signal being lost quite spontaneously.

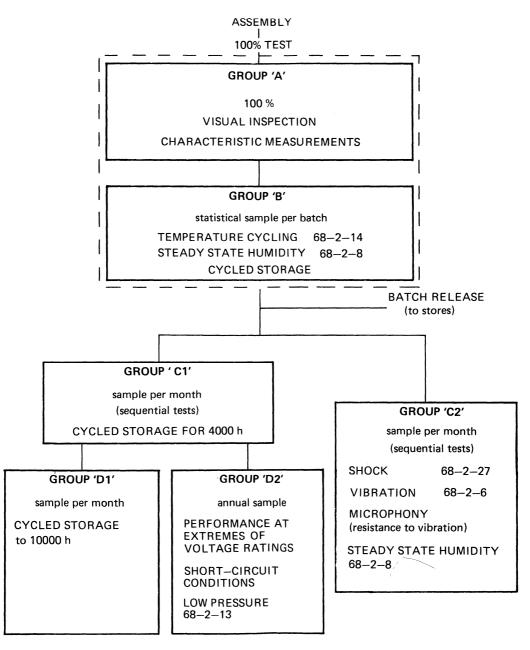
The discovery therefore, that the doping of TGS crystals with L-alanine during its growth produces an internal electric field which keeps the crystal polarized below its Curie temperature, was of fundamental importance to its use as a practical, reliable infrared sensing material. The doping of TGS crystals with L-alanine is a Philips patented process and material prepared this way is known as LATGS.

The introduction of the doping of TGS in this way produced another benefit, in that the electrical loss of the material was substantially reduced, resulting in detector NEP performance which has never been surpassed.

The Curie temperature of 49 °C causes the maximum operating temperature to be limited to 45 °C. By deuteration of the LATGS material, the Curie temperature is raised to 60 °C, giving an upper operating temperature of 55 °C. This material, DLATGS, is increasingly becoming the standard for this class of sensor and is the preferred material for new development types.

TGS INTRODUCTORY NOTES

TGS QUALITY PROCEDURES


The L-alanine doped triglycine sulphate (LATGS) and the deuterated L-alanine doped, triglycine sulphate (DLATGS) infrared sensors are manufactured using methods and materials that ensure the product is rugged enough to withstand global transportation and gives reliable performance in its application.

Components for the device are inspected and tested prior to assembly into sensors and each stage of assembly is inspected to ensure conformity with design. On completion, every sensor is tested for its primary characteristics before being passed to the Quality Assurance Department. At this stage, every sensor is re-measured and a sample of the production batch is taken for environmental tests. Subject to satisfactory results at the conclusion of those checks, the batch is released.

To establish confidence in product reliability, additional samples are taken each month. These devices are submitted to either a prolonged environmental test or a series of tests designed to ensure that the device will withstand electrical overstress and severe mechanical and environmental conditions. With two exceptions, the mechanical and environmental tests are taken from the International Electrotechnical Commission (I.E.C.) "Recommended Basic Climatic and robustness Testing Procedure for Components for Electronic Equipment", publications I.E.C. 68–1 and I.E.C. 68–2–series. The two exceptions are tests devised to check device performance during an extended period of operation under varying temperature conditions and to check device output whilst undergoing random vibration. Intermediate and post-test measurements are carried out on all the reliability tests.

Additional performance and reliability tests may be carried out on some products to assess their suitability in specific applications.

TYPICAL CONFORMITY AND RELIABILITY ASSESSMENT PROCEDURE

INTRODUCTION TO CERAMIC INFRARED SENSORS

Although infrared sensitive devices were originally designed for military and scientific applications, the development of low cost models has meant that their use in industrial and consumer products is becoming both economical and practical. One important field where pyroelectric infrared sensors are making a significant impact is that of security in both the commercial and residential markets.

Our ceramic infrared sensors are currently available in single, dual and four element configurations.

The standard TO-39 single and dual element devices have been available for some time and include RPY100, RPY102, RPY107 and RPY109 (single elements), RPW100 and RPW102 (dual elements).

This TO-39 product range has now been increased to include the RPW101, a low profile, lower cost version of the RPW100, and the RPY222, a sophisticated two channel (4 element) sensor with a unique element configuration which enables intelligent signal processing to be carried out leading to improved immunity to false alarms.

In addition we now have available low cost "flatpack" sensors, the KRX10 and KRX11, for applications such as light switching and door opening, etc.

The single element sensors are intended for non-focused movement detection, low cost gas analysers and remote temperature measurement applications. The sensor element is combined with a single impedance converting amplifier specially designed to operate from a low voltage supply with low current consumption. Each sensor is sealed in a TO-39 variant can with an infrared window.

The dual element sensors all have differentially connected elements which provide improved immunity from common mode signals such as those generated by variations in ambient temperature, background radiation and acoustic noise. The wide separation of the elements in these sensors makes them compatible with most optical systems used in movement sensing applications. As with the single element sensors, the elements are combined with a single impedance converting amplifier specially designed to operate from a low voltage supply with a low current consumption.

The recently introduced RPW101 is a low profiled TO-39 version of the RPW100 and is intended to give a lower cost option to this sensor.

The two channel device RPY222 is two sensors in one TO-39 envelope. Our unique and patented "interdigitated" element construction enables the intruder alarm manufacturer to process out most of the false alarm mechanisms which may affect passive infrared systems. Each channel has its own impedance converting amplifier.

The two new envelope types designed specifically for light switching applications, KRX10 and KRX11, are both dual element sensors and, as with their TO-39 counterparts, have a single impedance converting amplifier specially designed for low voltage supply with low current consumption. Their "flatpack" envelope makes them easier to handle and also ideal for short local length optics.

MOVEMENT SENSING USING A MULTI-ELEMENT FRESNEL LENS

1. INTRODUCTION

Our pyroelectric sensors are used extensively in passive infrared movement sensing applications where high sensitivity, reliability and low cost are basic requirements.

Although these sensors may be used directly to monitor scene thermal changes, it is generally advantageous to employ collecting optics to focus radiation on to the device. Thin, highly transmitting Fresnel lenses can collect infrared radiation very efficiently and provide optical gain over a defined field of view. This publication reviews the basic properties of Fresnel lenses in terms of geometric optics and describes the use of our Fresnel lens, which has been developed for general purpose movement sensing applications.

2. THE PROPERTIES OF FRESNEL LENSES

2.1 The Fresnel Lens

In applications such as movement sensing, it is often necessary to employ short focal length, large aperture lenses, to collect sufficient radiation from what may be a weak or distant source. Unfortunately, the unavoidable thickness of such lenses rules out standard lens materials because of absorption losses. On the other hand, materials which have very low absorption, over the 6 to 14 μ m wavelength range, are generally too expensive for commercial use.

Fresnel lenses, however, offer a neat solution to such problems since they can be produced in extremely thin sheets and thus allow the use of materials which have relatively poor transmission (e.g. polyethylene). They are essentially equivalent to thick conventional lenses, but with most of the bulk material between the outer surfaces removed. Without elaborating further, the equivalence of both types of lenses can be shown by considering the laws of refraction. This shows that the ray bending or refracting power of a lens is a function of surface curvature (and material refractive index) rather than the path length within the body of the lens.

In modern Fresnel lens designs, the profile of each groove facet is determined by computer simulation to produce the sharpest possible image from a distant object.

Although it is possible to produce Fresnel lenses of very large area, the effects of total internal reflection dictate that it is not useful to have a lens diameter much greater than the focal length. Radiation reaching areas beyond this is merely reflected back into the lens.

2.2 Lens operation and formulae

This section reviews the properties of lenses in terms of geometrical optics. This idealized approach gives sufficiently accurate results for most practical situations.

2.2.1. Focusing and imaging formulae

A lens is a device having refracting power and can be used to collect parallel rays (radiation) and focus them at a single point. The greater the refracting power of a lens, the closer the focal point will be to the lens. Focal length is defined as the distance between the focal point and lens centre and is a basic measure of the radiation gathering ability of a lens.

The focal length of a thin, plano-convex lens is given by:

$$\frac{1}{f} = (n-1) \frac{1}{r}$$

Where n represents the lens refractive index (approx. 1.5 for polyethylene) and r is the lens radius of curvature at its centre.

FRESNEL LENS

Object and image positions are related by the standard formula.

$$\frac{1}{f} = \frac{1}{\ell'} - \frac{1}{\ell}$$

Where ℓ and ℓ' are object and image distances respectively. Details regarding sign convention for this formula can be found in Reference 1.

An implication of this formula is that all rays pass through the lens centre undeviated. This can be seen by considering rays from a small object h, placed on one side of the lens, as shown in Figure 1, where ℓ is greater than f.

For clarity only two extreme and one central ray are shown per object point. These are just particular rays in what is in fact a ray cone or bundle.

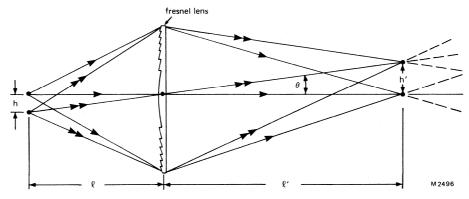
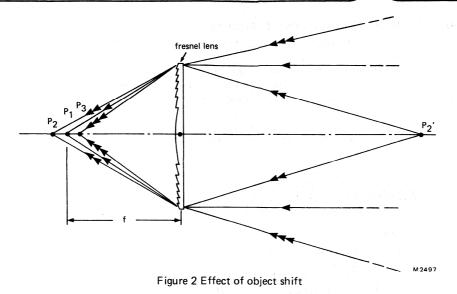


Figure 1 Image and object positions

A simple relationship exists between object and image size. By similar triangles, the magnification (M) is given directly as:

$$M = \frac{h'}{h} = \frac{\ell'}{\ell}$$

Where h and h' are object and image heights respectively.


Manipulation of the standard formula yields two further useful expressions for magnification:

$$M = 1 - \frac{\ell'}{f} \text{ and } M = \frac{1}{\frac{\ell}{f} + 1}$$

The effect of positioning an object about the focal point is shown in Figure 2.

When the object is precisely at the focal point P_1 , the rays refracted by the lens emerge parallel to each other. Shifting the object away from the lens to P_2 causes the emergent rays to converge to a point P_2 . A shift towards the lens creates a divergent ray bundle.

Since the path of light rays is reversible, the points P_2 and P_2' are interchangeable. A radiating source (object) at P_2' will be imaged at P_2 the usual position for a sensing element. Moreover, radiation from a source positioned on the right hand side of the lens will be directed on to P_2 (the sensor), provided they are of the appropriate direction and within the

system 'field of view' (see section 2.2.2). In all cases, the line joining the centres of the lens and the sensor defines the direction (sensing) axis.

Returning to Figure 1, it can be seen that the ray cones overlap least at the image points. Thus the images of two adjacent sensor elements placed at P_2 (Figure 2), will be sharply defined and separated only near P_2 .

2.2.2 Field of view

An optical instrument such as a telescope may be used to view a limited area of a distant scene. This area limit, or object field of view, applies equally well to a lens and sensor system. A small object, placed near the focal point of a lens as in Figure 1, has an angular field of view (θ) given approximately as:

$$\theta = \frac{h}{f}$$

(NOTE: This angle is not to be confused with the sensor field of view).

2.2.3 Lens radiation collection

Although focal length determines the refracting power of a lens, the amount of radiation collected is also dependent on the effective collecting area.

A lens imaging a very distant source has a radiation gathering ability given by:

Radiation collection =
$$\frac{K}{\text{f-number}^2}$$

Where f-number is the ratio of focal length over lens diameter and K is a constant.

An effective collecting area is implied in this expression. In general, it is simply the area within the rim of the lens; however, a lens inclined at an angle α to the direction axis has its effective area and collection reduced by a factor $\cos{(90-\alpha)}$.

Collection is further reduced because of decreased transmission and image degradation (aberrations) of a tilted lens; the latter causes radiation to be redirected outside the defined image area.

3. MULTI-ELEMENT FRESNEL LENSES (ARRAYS)

Fresnel lens arrays are becoming increasingly favoured as radiation collecting devices for use with pyroelectric sensors.

The discrete field of view monitored by each element, coupled with a moving source, modulates the radiation incident on the sensor and thus causes pyroelectric signal generation. Significant signals occur whenever a thermal source passes from an unmonitored to monitored area, or vice versa.

By distributing many elements over the area of the array, extended coverage can be achieved. Fresnel lens arrays have many advantages over equivalent reflecting optics arrays. Briefly these are:

- Less bulky and lighter
- Can be used without external windows
- Do not require specialized coating
- Cheaper to produce both in tooling and quantity unit costs

3.1 Our Fresnel lens array

We have developed a low cost Fresnel lens array for use with our sensors, suitable for general purpose movement sensing applications. It is designed to provide high sensitivity, long range monitoring up to a least 12 metres, with 90° volumetric coverage.

The lens specification is outlined in Table 1 and Figure 3.

Table 1 Lens Specification/Data

Focal length	30.5	mm
Nominal coverage	12 metres x 90	0
Number of monitored zones	A = 8 B = 4 C = 3	
Nominal average transmission Material	50 polyethylene	%

MECHANICAL DATA

Nominal dimensions in mm

For mounted lens

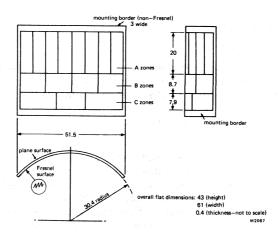


Figure 3 Lens mechanical data

The important features of the lens are: -

- A 15 element design which provides high signal sensitivity and movement discrimination.
- High quality optics match the imaging requirements of dual element sensors. Single element sensors may also be used, with reduced coverage (i.e. 50% fewer zones).
- Fresnel groove depth and thus transmission is constant over whole lens area.
- All elements are designed to give optimum radiation collection at the range limit aspheric groove contours minimize image aberrations.
- Each element includes part of the central ring which maintains high collection efficiency
 less loss due to inter-groove shadowing, scattering and diffraction.
- Can be used grooves-in or grooves-out, depending on requirements. In dusty
 environments grooves-in is recommended. If this is not the case, or if an external
 window is used, we recommend that the lens be used grooves-out, thus providing up to
 20% more signal than with grooves-in.

3.1.1 Typical usage and performance

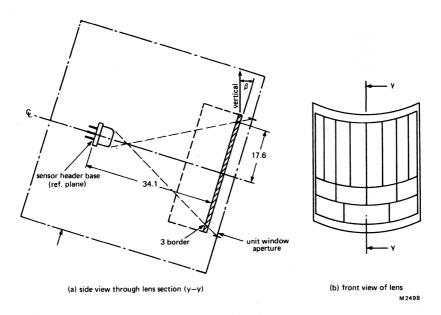


Figure 4 Typical mounting arrangement

A typical lens mounting arrangement is shown in Figures 4a and 4b, which represent the side and front views respectively. In Figure 4a the sensor plane and the lens section (y-y) are parallel and are inclined by an angle β to the vertical.

In this configuration all 'A' and 'B' elements are almost perpendicular to their respective direction axes (element to sensor centres), which ensures optimum collection along the zones. Objects positioned at the range limit are essentially in focus on the sensor. In addition, the system field of view is such that a human outline, at this range, just fills a 2×1 mm sensor area.

FRESNEL I FNS

Nominal zonal coverage, corresponding to β = 12° and a fixing height of 2.1 metres, is depicted in Figures 5 and 6.

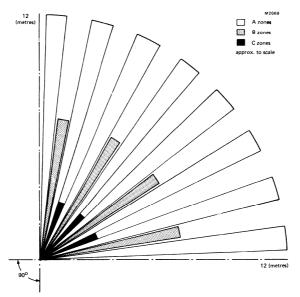


Figure 5 Nominal zonal coverage - plan view

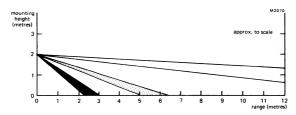


Figure 6 Nominal zonal coverage — side view

The minimum window aperture for the enclosure can be determined with reference to Figure 4a; namely by extending the dotted line from sensor to lens edges (vertically and horizontally) until they intersect the enclosure face.

A typical curve of sensor response against target range, for a single 'A' zone is shown in Figure 7. Because pyroelectric signal generation is proportional to radiant energy differences, this response curve will be strongly dependent on both background and target temperatures. The reduction of signal at short range results from minor cancellation effects. Such effects occur whenever both elements of a dual element sensor receive a proportion of energy from the same source.

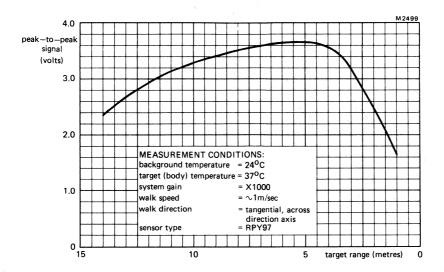


Figure 7 Typical signal level as a function of target range

3.1.2 Alternative mounting configurations

Although the mounting arrangement in Figure 4 will be suitable for most general applications, particular situations may dictate alternative configurations. Useful alternative mounting arrangements fall into two categories, a) where the unit is repositioned as a whole, and b) where the lens is repositioned relative to the sensor. Unit orientation and mounting height fall into the first category, whilst a different lens tilt angle, relative to a fixed sensor position, belongs to the latter category. The effect on system performance associated with any such changes needs careful consideration, particularly with regard to changes in zonal coverage and signal response.

The monitoring of a small room is one example where improved performance will be obtained by changes to the standard mounting arrangement. More effective coverage and increased signal levels will be achieved by inclining the zone-fan downwards or by shifting the whole zone-fan vertically downwards. The former can be achieved by a downward tilt of the unit whilst the latter simply requires a reduction in fixing height. In both cases, moving the lens and sensor as a unit does not affect the position of zones relative to one another.

The lens may be used equally well in other configurations where constraints such as unit shape restrictions dictate. In cases where it is necessary to change the position/orientation of the lens relative to the sensor, consideration must be given to associated changes in focusing as well as zonal coverage and signal response.

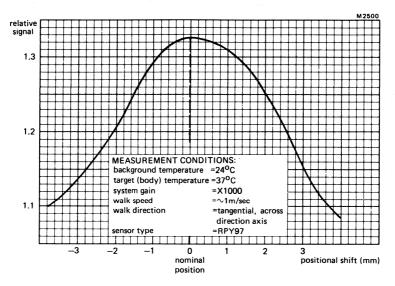


Figure 8 Typical relative signal as a function of sensor position

For guidance, a plot of signal sensitivity versus sensor position, for a single 'A' zone, is given in Figure 8, where the peak of the curve corresponds to the sensor in its nominal position. At this point, the image of the object at the design range is sharply defined so as to ensure minimum signal cancellation, after image motion across the elements.

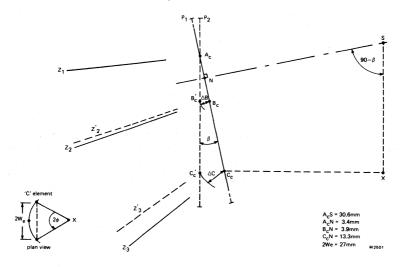


Figure 9 Zonal coverage as a function of lens tilt

The effect of lens tilt angle on zonal coverage is illustrated in Figure 9, where lens position P_1 corresponds to a $12^{\rm O}$ tilt for nominal zonal coverage. Only the central vertical section of the lens is shown. A_C is an 'A' zone element centre, and is taken as being the section. B_C and C_C are the corresponding points for the B and C elements and S is the sensor position. S, A_C , B_C and C_C define the direction axes Z_1 , Z_2 and Z_3 for position P_1 . Note that the outer elements also define direction axes in space but have been omitted for clarity.

Another lens position of particular interest is that with the lens vertical (zero tilt) which corresponds to P_2 in the diagram. To maintain the nominal 'A' zone direction, the lens has been vertically rotated about A_C . This rotation also ensures that 'A' zone focusing is unaffected. Although direction axis Z_1 is common to position P_2 the new directions for the 'B' and 'C' zones become Z'_2 and Z'_3 . Thus the zone-fan is compressed vertically, and the greatest shift occurs along the C element direction. Even so, the 'aiming' points of the 'B' and 'C' zone axes are shifted by only approx. 400 mm, along the floor. Such small shifts can be compensated for by repositioning the sensor along A_CS , at the penalty of 'A' zone defocusing.

For all tilt angles other than 0°, the inclination of the extreme zones differs slightly from the central ones of any row. Over a lens tilt range of 0 to 14° (fixed sensor position), however, the effect is of little practical significance. At 12° tilt, for instance the extreme 'A' zone aims at a point approx. 500 mm above the central 'A' zone, at 12 metres range. Because of the shorter distances involved, the effect is also insignificant for the 'B' and 'C' zones.

The projected angle of any zone fan onto the horizontal plane is also affected by lens tilt. For tilt angles below 14° the effect is small, and may be neglected for the 'A' and 'B' zones, given fixed S and rotation as in the diagram. For the 'C' zones, the sine of the projected zone fan semi-angle ϕ changes from:

$$\sin \phi \approx \frac{W_e}{C_c X} \approx \frac{W_e}{C_c' X - A_c C_c \sin \beta}$$
 to
$$\sin \phi \approx \frac{W_e}{C_c' X}$$
 after rotation

where $C_C'X = A_CN \sin \beta + SN \cos \beta$ and W_e is the half-distance between the outer 'C' zone elements (see plan view inset). With the geometry of the lens given, simple trigonometry can be used to calculate the changes in fan angle. The total projected 'C' zone fan-angle is approximately 60° for a 14° tilt and changes to 52° at zero tilt.

Although the element to sensor distance $A_{c}S$ is taken to be fixed after rotation, lens geometry is such that the focusing distance of all 'A' zone elements, (to S) also remains essentially constant. This is not the case for the 'B' and 'C' element focusing distances, which are increased by ΔB and ΔC , respectively. For both these rows of elements, images which are sharply focused at S, now correspond to object points much closer to the lens. As a consequence of defocusing, increased cancellation effects reduce signal levels for the 'B' and 'C' zones at maximum range (see Figure 7); because of the proximity of object sources, the effect is less significant for the 'B' zones.

Because of the factors outlined in section 2.2.3, signal reduction also occurs as a direct result of lens inclination to the direction axis. For the 'A' zones, lens inclination to Z₁ is similar for both 0° and 12° tilt, so that radiation collection is unchanged. The 'B' and 'C' direction axes, however, are increasingly inclined to the lens after rotation to P₁. Typical signal reduction factors versus lens inclination angle α can be estimated from the curve in Figure 10. In this case, the additional signal reduction for the 'B' and 'C' zones after rotation, is approximately 50% and 60% respectively.

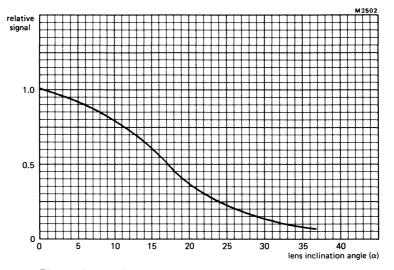


Figure 10 Typical relative signal as a function of lens inclination

Another factor which affects signal level is the sensor angle relative to a zone axis. This arises because sensor sensitivity is approximately dependent on the cosine of the angle between the sensor normal and the direction of incident radiation. In general, directing the sensor axis along SN provides a reasonable compromise. In this condition, the sensor response is within approx. 5% of maximum for both 'A' and 'B' zones, where maximum corresponds to radiation at normal incidence (0°). The effective sensitivity of the sensor for the 'C' zone is within approx. 15% of maximum.

If desired, the optimum response may be achieved from one zone row by orientating the sensor vertically towards the effective centre of the central zone element; for the 'A' zones this corresponds approximately to a horizontal position of the sensor axis. Similarly, optimum response along the 'B' or 'C' zones can be achieved by directing the sensor axis at the centre of the appropriate element. Naturally, directing the sensor to favour a particular zone row reduces the signal response for the other rows.

In any particular configuration, account must be taken of any signal reduction factors e.g. lens inclination to a direction axis. Such factors will modify the signal sensitivity versus range curve. Because some of the effects associated with lens/sensor movement can independently affect signal cancellation, e.g. focusing and zonal coverage density, and because of the nature of real sources, the modification of overall response will only be approximated by the summation of all the separate reduction factors.

REFERENCE

Geometrical and physical optics, R.S. Longhurst (Longman).

FRESNEL LENS

ORDERING

The lens is available **only** in conjunction with one of **our** range of pyroelectric sensors and is obtainable by adding the suffix FL to **our** sensor part number.

DUAL ELEMENT PYROELECTRIC INFRARED SENSOR

Special features:

Enhanced IR sensitivity

Wide field of view

Pick and place compatible

Application:

For use in passive IR light switching systems

Element configuration:

Dual element series opposed

Daylight filtered silicon

Electrical: Window:

Incorporating impedance converting amplifier

QUICK REFERENCE DATA

MECHANICAL DATA

Measured in source follower mode with 100 k Ω load resistor min. typ. max. Noise, peak-to-peak 25 45 μV (bandwidth 0.4 Hz to 5 Hz) Peak signal (500K, 1) μV with incident energy of 25 μWcm⁻² 570 900 2 x 1 Element dimensions mm see below degrees Field of view Operating voltage 3 10 V 20 Optimum operating frequency range 0.1 Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

see operating note 8, page 2

M 2305

Dimensions in mm

PRODUCT SAFETY

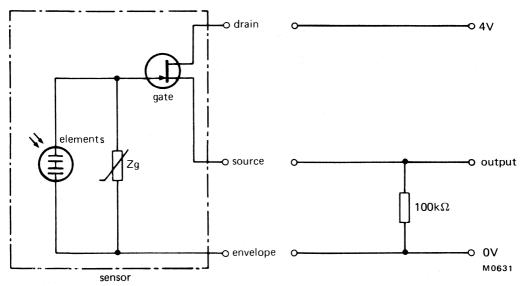
Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

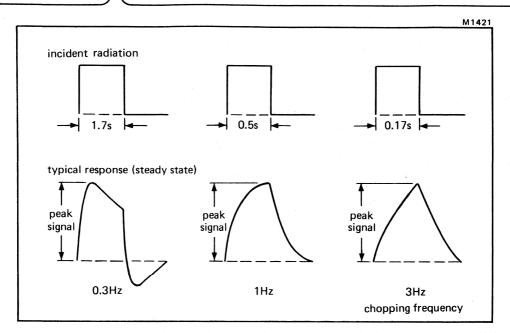
SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

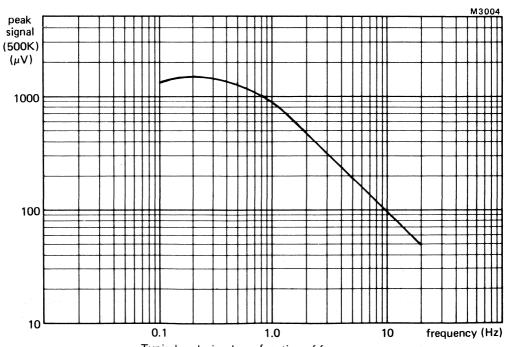
OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist staps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.
- 8. Because of its small dimensions, this sensor has a low thermal mass. Optimum performance will be obtained by mounting it flat onto a printed circuit board with a thermally conductive adhesive.

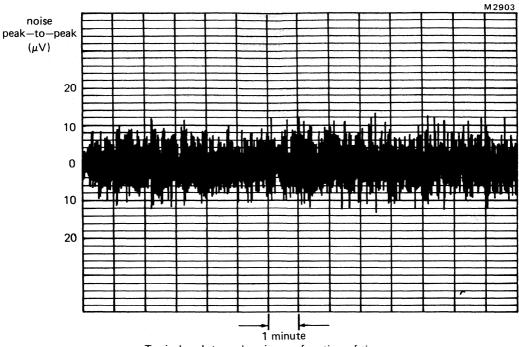

CHARACTERISTICS (at $T_{amb} = 22 \text{ }^{o}\text{C} \pm 3 \text{ }^{o}\text{C}$ and with recommended circuit).

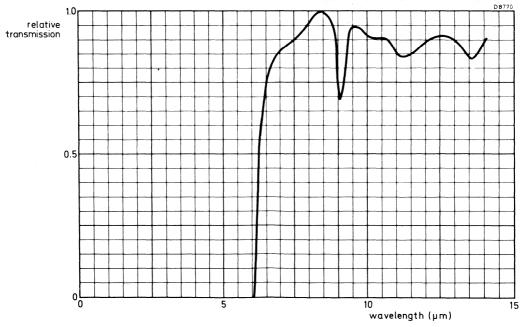

Measured in source follower mode with	100 k Ω load	resistor			
		min.	typ.	max.	
Spectral response		6.5 ± 0.5	- :	> 14	μm
Noise , peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	(see note)	% 	25	45	μV
Peak signal (500 K, 1) with incident energy of 25 μ Wcm ⁻²		570	900	-	μ∨
Element dimensions			2 x 1		mm
Field of view		_	see page 1	<u> </u>	
FET Characteristics (at T _{amb} = 22 °C ±	3 oC)				
		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{(P)GS}	-1.4		-0.5	V
Transfer conductance V _{GS} = 0, V _{DS} = 6 V, f = 1.0 kHz	9fso	1.3		_	mAV-1

Note


Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT




Typical response (steady state) for a given chopping frequency

Typical peak signal as a function of frequency (energy level 25 μWcm^{-2} at the element with the other element screened)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical normalized window transmission characteristic

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the sensors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC 68-	2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-	2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-	2-21	Ub	Lead Fatigue	4 cycles	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
68-	2-1	Aa	Low Temperature Storage	−55 °C	2000 hours	2
68-	2-2	Ba	High Temperature Storage	+85 °C	2000 hours	2
68-	2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
68-	2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-	2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-	2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-	2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

Notes

- The sensors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

DUAL ELEMENT PYROELECTRIC INFRARED SENSOR

Special features:

Enhanced IR sensitivity

Wide field of view

Pick and place compatible

Application:

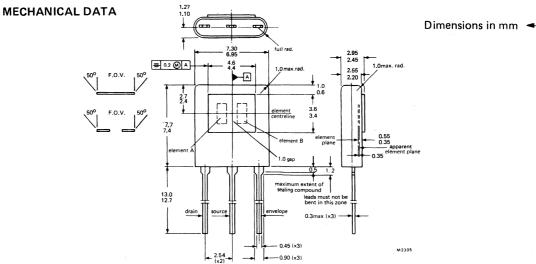
For use in passive IR light switching systems

Element configuration:

Dual element series opposed

Electrical:

Incorporating impedance converting amplifier


Window:

Uncoated silicon

QUICK REFERENCE DATA

Measured in source follower mode with 10	$00~\mathrm{k}\Omega$ load resis	tor		
	min.	typ.	max.	
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)		30	65	μV
Peak signal (500K, 1) with incident energy of 25 μWcm ⁻²	570	900	_	μV
Element dimensions	_ '	2 x 1	_	mm:
Field of view	_	see below	·	degrees
Operating voltage	3	<u> </u>	10	V
Optimum operating frequency range	0.1		20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — ${\tt OPTOELECTRONIC\ DEVICES}$

See operating note 8, page 2

PRODUCT SAFETY

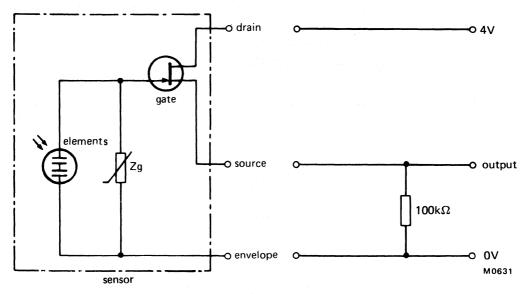
Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

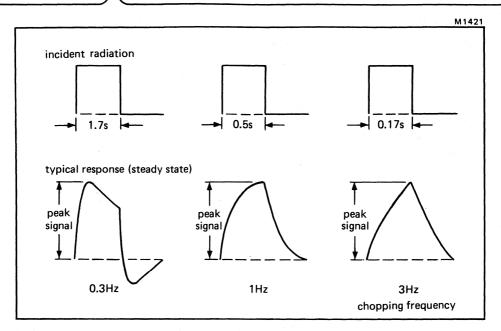
SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

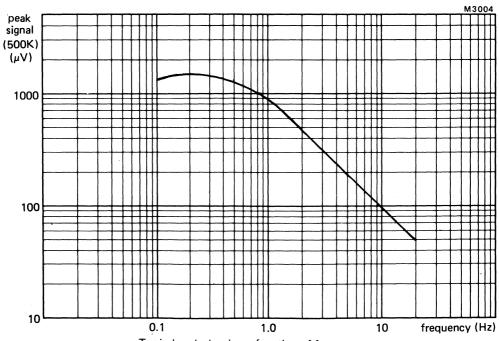
OPERATING NOTES

- The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist staps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.
- 8. Because of its small dimensions, this sensor has a low thermal mass. Optimum performance will be obtained by mounting it flat onto a printed circuit board with a thermally conductive adhesive.

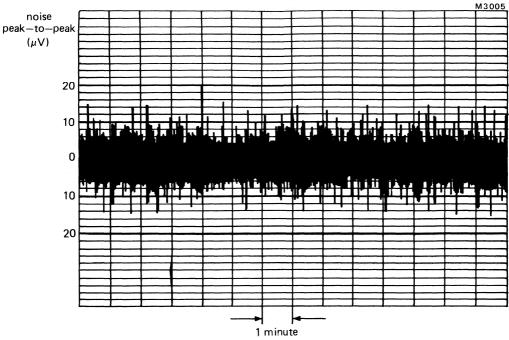

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit).

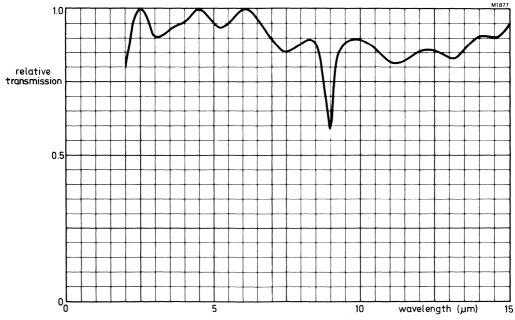

Measured in source follower mode wit	h 100 k Ω loa $^{\circ}$	d resistor			
		min.	typ.	max.	
Spectral response			optimized 6 to 14		μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	(see note)	· · · · · · · · · · · · · · · · · · ·	30	65	μV
Peak signal (500 K, 1) with incident energy of 25 μ Wcm ⁻²		570	900	-	μV
Element dimensions		- -	2 x 1	_	mm
Field of view		·	see page 1	. <u></u>	
FET Characteristics (at T _{amb} = 22 °C	± 3 °C)				
		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{(P)GS}	-2.0	· —	-0.5	V
Transfer conductance V _{GS} = 0, V _{DS} = 6 V, f = 1.0 kHz	9fso	1.3		1	mAV-1

Note


Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT




Typical response (steady state) for a given chopping frequency

Typical peak signal as a function of frequency (energy level 25 $\mu W cm^{-2}$ at the element with the other element screened)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical normalized window transmission characteristic

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the sensors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC 68-2	2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2	2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-2	2-21	Ub	Lead Fatigue	4 cycles		1
68-2	2-1	Aa	Low Temperature Storage	–55 °C	2000 hours	2
68-2	2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
68-2	2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
68-2	2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2	2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2	2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2	2-20	Tb	Resistance to Solder Heat	+350 ^o C, 6 mm from header	3 seconds	3

Notes

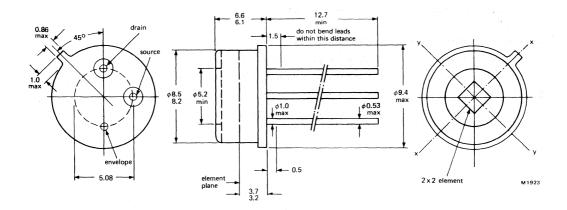
- 1. The sensors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SINGLE ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device intended for gas analysis systems such as that used for analysing car exhausts. The element is combined with a single impedance converting amplifier which is specially designed to operate from low voltage supplies with low current consumption. The detector is sealed in a 3-lead TO-5 encapsulation modified to incorporate a potassium bromide (KBr) window.

QUICK REFERENCE DATA


Spectral Response	Killer and the second and the second	1 to 25	μm
Responsivity (500 K, 10)	typ.	90	VW ⁻¹
Noise Equivalent Power (N.E.P.) (500 K, 10, 1)	typ.	1.4 × 10 ⁻⁹	WHz ^{-1/2}
D* (500 K, 10, 1)	typ.	1.4×10^{8}	cmHz½W-1
Element dimensions	nom.	2 x 2	mm
Field of view in horizontal plane (x-x)	min.	60	degrees
Operating voltage	min.	3 y 3 y 4 y 3	V 1 1 1 1 1 1 1 1 1 1
Optimum operating frequency range		10 to 100	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

Dimensions in mm

SOT-49G (TO-5 variant)

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	30	· V
Temperature, operating range		-20 to +70	oC
Temperature, storage range		-20 to +70	oC
Lead soldering temperature, ≥ 6 mm from header, $t_{sld} \leq 3$ s max.		+350	οС

OPERATING CONDITIONS

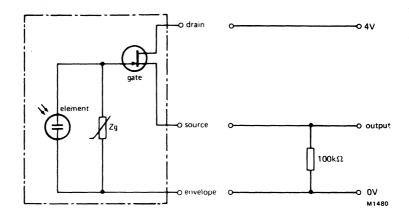
	min.	max.	
Voltage (operating note 5)	3	10	V
Frequency (operating note 5)	10	100	Hz

OPERATING NOTES

- The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 4. An increase in temperature of the element will produce a positive going signal at the output.
- 5. The detector will operate outside the quoted range but may have a degraded performance.
- Before testing, due to the high sensitivity of these detectors, care must be taken to ensure that the devices are allowed to become thermally stable.

P2105 (DEV. NO)

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit)


		min.	typ.	max.	
Spectral Response		1.0		25	μm
Responsivity (500 K, 10)		60	90	_	∨W-1
N.E.P. (500 K, 10, 1)		_	1.4×10^{-9}	3 x 10 ⁻⁹	WHz ⁻¹
D* (500 K, 10, 1)			1.4×10^{8}	_	cmHz½W-1
Field of View (x-x plane, total angle)	note 1	60	_	_	degrees
(y-y plane, total angle)	note 1	60	_	-	degrees
Quiescent current		_ '	10	. <u>+</u>	μΑ
Element dimensions			2 x 2 nominal		mm
FET Characteristics (at T _{amb} = 22 °C	± 3 °C)				
		min.	typ.	max.	
Gate-Source Cut-off Voltage					

		111111.	ιγp.	max.	
Gate-Source Cut-off Voltage $I_D = 0.1 \mu A, V_{DS} = 6 V$	V _{P(GS)}	-1.2		-0.5	V
Transfer Conductance					
$V_{GS} = 0$, $V_{DS} = 6 V$, $f = 1 kHz$	9fso	1.3	_	-	mAV^{-1}

Notes

1. Field of view to 50% of the maximum signal level.

RECOMMENDED CIRCUIT

DEFINITIONS

1. Responsivity VW⁻¹

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power. The published values of responsivity are qualified by figures in brackets, for example (500 K, 10). The 500 K denotes the temperature of the black body source of the infrared radiation generating the signal voltage, while the 10 indicates that the radiation is chopped at a frequency of 10 Hz.

2. Noise Equivalent Power (N.E.P.) WHz^{-1/2}

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$. As with responsivity the relevant test conditions must be specified, for example (500 K, 10, 1). The 500 K is the temperature of the black body source of the incident radiation, 10 is the chopping frequency in Hz, and 1 is the bandwidth in Hz.

3. D* cmHz^{1/2}W⁻¹

This is a figure of merit for the material used in the detector and takes account of element size and signal to noise ratio. It is used to specify and compare detectors and in contrast to N.E.P., has a higher value for a better performance device.

D* is defined by the expression:
$$D^* = \frac{V_s}{V_n} \left[A \left(\triangle f \right) \right]^{\gamma_2}$$

where V_S = Signal voltage across detector terminals

V_n = Noise voltage across detector terminals

A = Detector area

 $(\triangle f)$ = Bandwidth of measuring amplifier

W = Radiated power incident on detector (r.m.s. value in watts)

The Noise Equivalent Power (N.E.P.) is related to D* by the expression:

N.E.P. =
$$\frac{(A)^{1/2}}{D^*}$$

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors will be assessed at regular intervals against the requirements of the following IEC standards. The limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration
IEC 68-2-3	Ca	Damp Heat, steady state	+20 °C, 70% RH	96 hours
68-2-20	Та	Solderability	+235 ^o C, 1.5 mm from header	5 seconds
68-2-21	Ub	Lead Fatigue	4 cycles	<u> </u>
68-2-1	Aa	Low Temperature Storage	−20 °C	2000 hours
68-2-2	Ba	High Temperature Storage	+70 °C	2000 hours
68-2-14	Nb	Change of Temperature	-20 °C to +70 °C	10 cycles
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations
68-2-20	Tb	Resistance to Solder Heat	+350 ^o C, 6 mm from header	3 seconds

DUAL ELEMENT PYROELECTRIC INFRARED SENSOR

Special features:

Enhanced IR sensitivity

Wide field of view

Minimal reaction to ambient temperature changes

Application:

For use in passive IR intruder alarms

Element configuration:

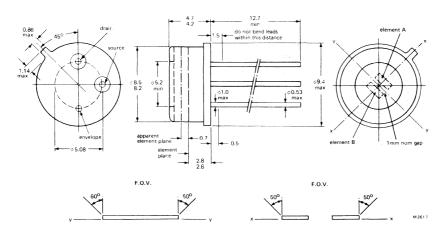
Dual element series opposed

Electrical:

Incorporating impedance converting amplifier

Window:

Daylight filtered silicon


QUICK REFERENCE DATA

Measured in source follower mode with	100 k Ω load re	esistor			
	min.	typ.	max.		
Spectral response	6.5 ± 0.5		> 14	μ m	
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	_	25	45	μV	
Peak signal (500K, 1) with incident energy of 25 μ Wcm ⁻²	570	800	——————————————————————————————————————	μV	
Element dimensions	, _ '	2 x 1	_	mm	
Operating voltage	3	ing Salah <u>+</u> Salah	10	V	
Optimum operating frequency range	0.1		20	Hz	

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS - OPTOELECTRONIC DEVICES $\,$

MECHANICAL DATA

SOT-49E (TO-39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (see operating note 7)

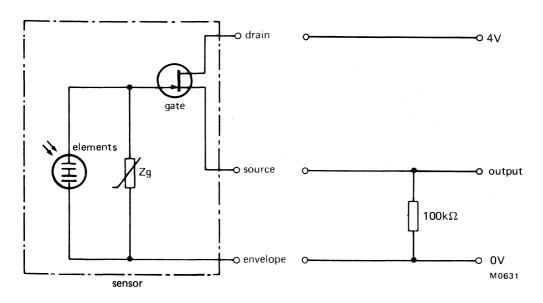
RATINGS

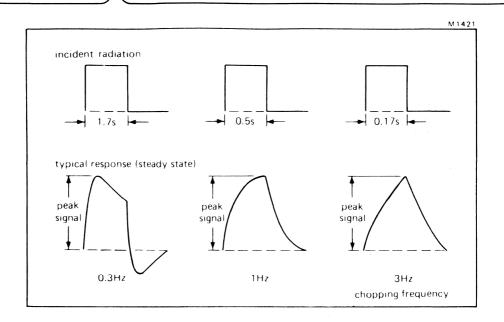
Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	20	V
Temperature, operating range		-40 to +70	οС
Temperature, storage range		-55 to +85	°C
Lead soldering temperature, ≥ 6 mm from header, $t_{sld} \leq 3$ s		+350	οС

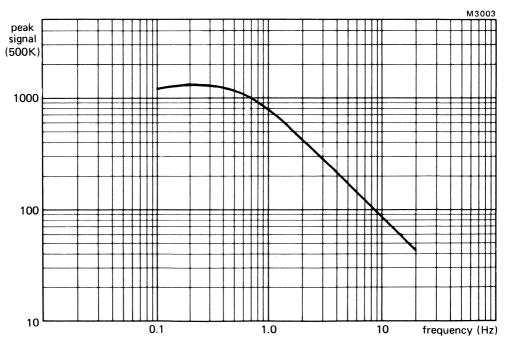
- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn, (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted into or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit)

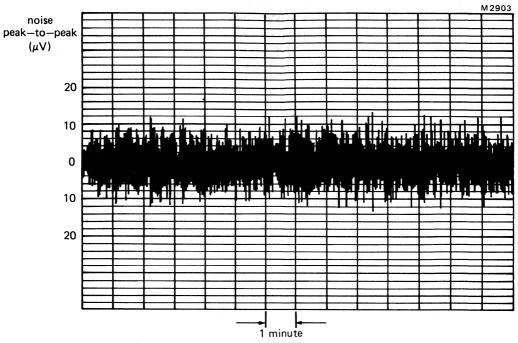

Measured in source follower mode with 100 k Ω load resistor

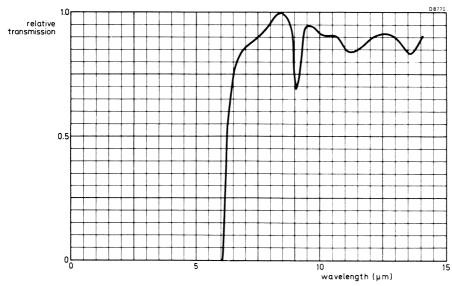

	min.		typ.	max.	
			typ.		
Spectral response	6.5 ± (0.5		>14	μ m
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz) (note)	_		25	45	μV
Peak signal (500K, 1) with incident energy of 25 μ Wcm ⁻²	570		800		μV
Element dimensions	_		2 x 1		mm
Field of view			see page 1		
FET Characteristics (at T _{amb} = 22 °C	± 3 °C)				
		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$ Transfer conductance	V _{P(GS)}	-1.4	- : - :	-0.5	V
V _{GS} = 0, V _{DS} = 6 V, f = 1 kHz	9fso	1.3	·-	<u>-</u>	mAV ⁻¹

Note


Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT




Typical response (steady state) for a given chopping frequency

Typical peak signal as a function of frequency (energy level $25 \,\mu W \, cm^{-2}$ at the element with the other element screened)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical normalized window transmission characteristic

As part of the Quality Assurance programme, the sensors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
	68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
	68-2-21	Ub	Lead Fatigue	4 cycles		1 1
	68-2-1	Aa	Low Temperature Storage	_55 °C	2000 hours	2
	68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
	68-2-14	Nb	Change of Temperature	−55 °C to +85 °C	10 cycles	2
	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
	68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
	68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
	68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- 1. The sensors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

DUAL ELEMENT PYROELECTRIC INFRARED SENSOR

Special features:

Low profile can

Application:

For use in passive IR intruder alarms and light switches

Element configuration:

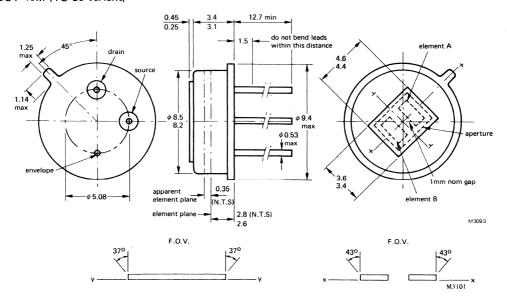
Dual element series opposed

Electrical:

Incorporating impedance converting amplifier

Window:

Daylight filtered silicon


QUICK REFERENCE DATA

Measured in source follower mode with 10	$00~\mathrm{k}\Omega$ load resistor			
	min.	typ.	max.	
Spectral response	6.5 ± 0.5	_	>14	μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)		25	45	μ ∨
Peak signal (500K, 1) with incident energy of 25 μ Wcm ⁻²	570	800		μ٧
Element dimensions	_	2 x 1	<u>-</u>	mm
Operating voltage	3	-	10	V
Optimum operating frequency range	0.1		20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49M (TO-39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed.
 Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device, (see operating note 7)

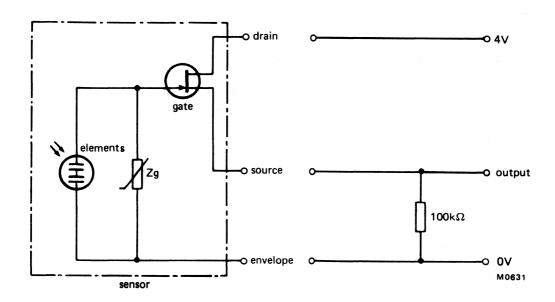
RATINGS

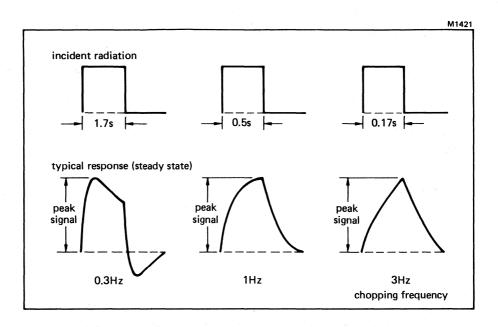
Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	20	V
Temperature, operating range		-40 to +70	οС
Temperature, storage range		55 to +85	oC
Lead soldering temperature. ≥ 6 mm from header, $t_{\rm old} \leq 3$ s		+350	οс

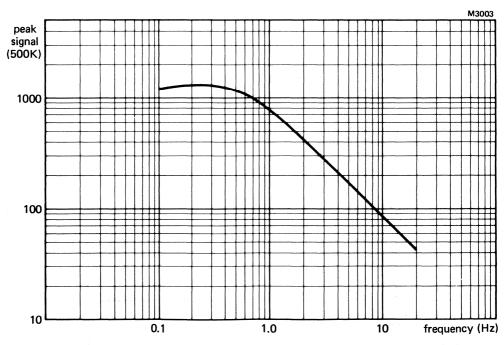
- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted into or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit)

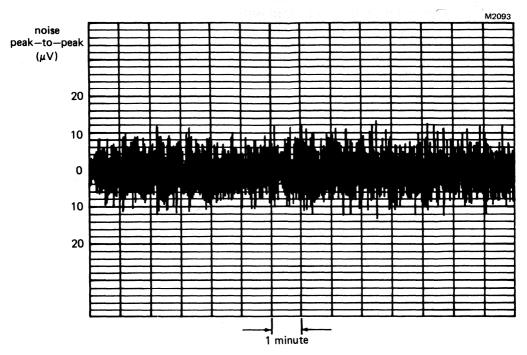

Measured in source follower mode with 100 k Ω load resistor.

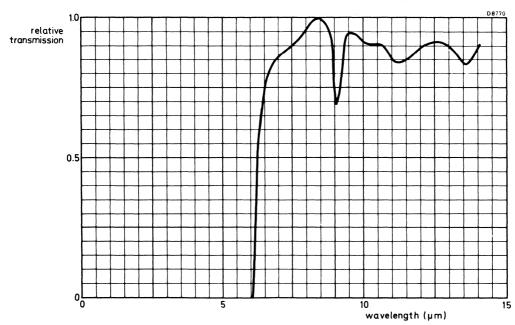

		min.	typ.	max.	
Spectral response		6.5 ± 0.5		>14	μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz) (note)			25	45	μV
Peak signal (500K, 1) with incident energy of 25 μWcm ⁻²	en de la companya de El	570	800	·	μV
Element dimensions		_	2 x 1	_	mm
Field of view			see page 1		
FET Characteristics (at T _{amb} = 22 °C	C ± 3 °C)				
		min.	typ.	max.	
Gate-source cut-off voltage					
$I_D = 0.1 \mu\text{A}, V_{DS} = 6 \text{V}$	V _{(P)GS}	-1.4		-0.5	V
Transfer conductance $V_{GS} = 0$, $V_{DS} = 6$ V, $f = 1$ kHz	g _{fso}	1.3			mAV ⁻¹

Note


Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT




Typical response (steady state) for a given chopping frequency

Typical peak signal as a function of frequency (energy level 25 $\mu W cm^{-2}$ at the element with the other element screened)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical normalized window transmission characteristic

As part of the Quality Assurance programme, the sensors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test	 The second of the second of the	Severity	Duration	Note
IEC	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
	68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	2
	68-2-21	Ub	Lead Fatigue	4 cycles	, 100 원 (100 원) (100 원 (100 원)	2
	68-2-1	Aa	Low Temperature Storage	_55 °C	2000 hours	2
	68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
	68-2-14	Nb	Change of Temperature	−55 °C to +85 °C	10 cycles	2
	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
	68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
	68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
	68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- The sensors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

DUAL ELEMENT PYROELECTRIC INFRARED SENSOR

Special features:

Enhanced IR sensitivity

Low response to RFI Wide field of view

Minimal reaction to ambient temperature

changes

Application:

For use in passive IR intruder alarms

Element configuration:

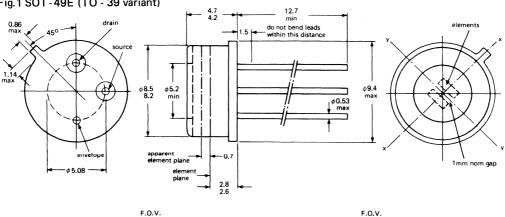
Dual element series opposed

Electrical:

Incorporating impedance converting amplifier

Window:

Daylight filtered silicon


QUICK REFERENCE DATA

Measured in source follower mode with 100 ks				
Spectral response	min. 6.5 ± 0.5	typ.	max. >14	μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	,	25	45	μV
Peak signal (500K, 1) with incident energy of 25 μWcm ⁻²	570	800	_	$\mu \lor$
Element dimensions		2 x 1	_	mm
Operating voltage	3	. <u>-</u>	10	V
Optimum operating frequency range	0.1	, ,	20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS -OPTOELECTRONIC DEVICES

MECHANICAL DATA

Fig. 1 SOT - 49E (TO - 39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed.
 Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (see operating note 7)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Supply voltage	max.	20	V
Temperature, operating range		-40 to +70	оС
Temperature, storage range		-55 to +85	оС
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3 s$		+350	оС

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted into or removed from test fixtures with power applied.

CHARACTERISTICS (at $T_{amb} = 22 \, ^{o}C \pm 3 \, ^{o}C$ and with recommended circuit)

Measured in source follower mode with 100 k Ω load resistor

		min.	typ.	max.	
Spectral response		6.5 ± 0.5	_ '	>14	μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz) (note)		- -	25	45	μ∨
Peak signal (500K, 1) with incident energy of 25 μ Wcm ⁻²		570	800		μ∨
Element dimensions		·	2 x 1	_	mm
Field of view			see page 1		
FET Characteristics (at $T_{amb} = 22 {}^{0}C \pm 3 {}^{0}$	C)	min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{(P)GS}	_1.4		-0.5	V
Transfer conductance V _{GS} = 0, V _{DS} = 6 V, f = 1 kHz	9fso	1.3		-	mAV-1

Note

Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions, see operating note 6 on page 2.

RECOMMENDED CIRCUIT

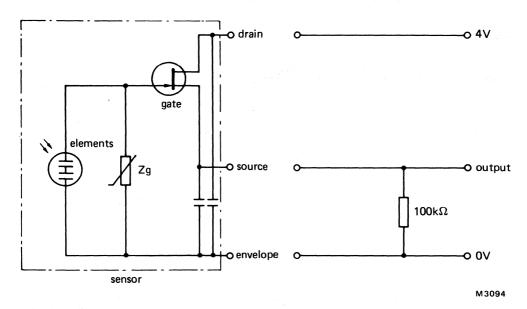


Fig. 2.

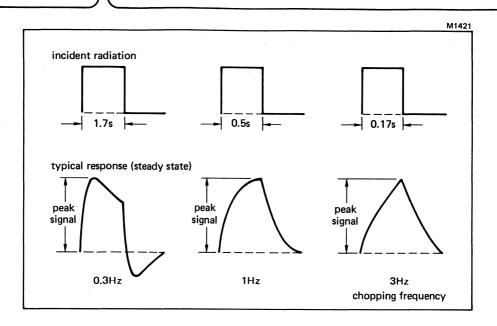


Fig. 3 Typical response (steady state) for a given chopping frequency.

Fig. 4 Typical peak signal as a function of frequency (energy level 25 $\mu W cm^{-2}$ at the element with the other element screened).

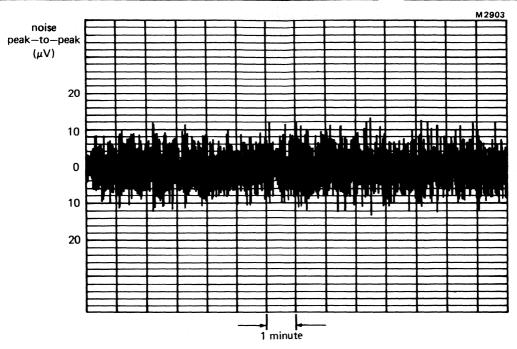


Fig.5 Typical peak-to-peak noise as a function of time (filter bandwidth $0.4~{\rm Hz}$ to $5~{\rm Hz}$).

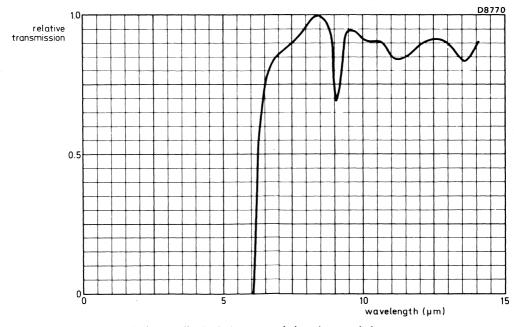


Fig. 6 Typical normalized window transmission characteristic.

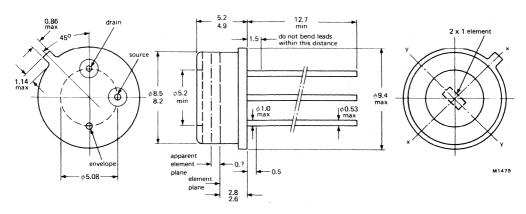
As part of the Quality Assurance programme, the sensors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

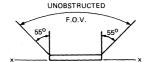
		Test		Severity	Duration	Note
IEC	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
	68-2-20	Та	Solderability	+235 ^O C, 1.5 mm from header	5 seconds	2
	68-2-21	Ub	Lead Fatigue	4 cycles	200 jili 1920 1 la 1920 i lij	2
	68-2-1	Aa	Low Temperature Storage	–55 ^o C	2000 hours	2
	68-2-2	Ва	High Temperature Storage	+85 ^o C	2000 hours	2
	68-2-14	Nb	Change of Temperature	-55 $^{\rm o}$ C to +85 $^{\rm o}$ C	10 cycles	2
	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
	68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
	68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
	68-2-20	Tb	Resistance to Solder Heat	+350 ^o C, 6 mm from header	3 seconds	3

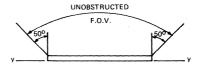
- 1. The sensors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

SINGLE ELEMENT PYROELECTRIC INFRARED SENSOR

This is an infrared sensitive device intended for battery operated passive infrared movement detectors such as intruder alarms in which high grade optics e.g. multi-faceted mirrors or Fresnel lenses are used. The element is combined with a single impedance converting amplifier which is specifically designed to function from low voltage supplies with low current consumption. The sensor is sealed in a low profile TO-39 can with a window optically coated to restrict response to wavelengths greater than 6.5 μ m.


QUICK REFERENCE DATA


Spectral response		6.5 ± 0.5 to >14	μm
Responsivity (10 μm, 10)	typ.	150	VW ⁻¹
Peak signal (500 K, 1) note 1, page 3	typ.	460	μV
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	typ.	20	μV
Element dimensions	nom.	2 x 1	mm
Operating voltage	min.	3	· V
Optimum operating frequency range		0.1 to 20	Hz


This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49H (TO-39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. In the United Kindom disposal of large quantities should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	30	V
Temperature, operating range		-40 to +70	oC
Temperature, storage range		-55 to +85	oC
Lead soldering temperature, ≥ 6 mm from header, t _{eld} ≤ 3 s max.		+350	оС

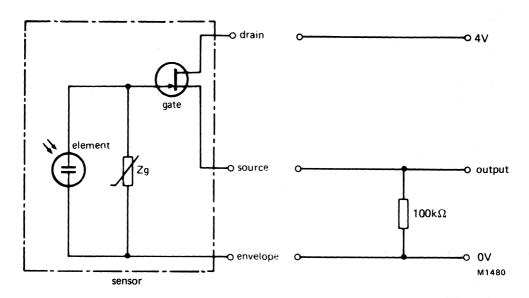
OPERATING CONDITIONS

	min.	max.	
Voltage (operating note 5)	3	10	V
Frequency (operating note 5)	0.1	20	Hz

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of the element will produce a positive going signal at the output.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- Before testing, due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 °C ± 3 °C and with recommended circuit)

		min.	typ.	max.	
Spectral response		6.5 ± 0.5		>14	μm
Responsivity* (10 μ m, 10)		100	150		VW-1
N.E.P. (10 μm, 10, 1)			2.5×10^{-9}	_	WHz ^{-1/2}
Peak signal (500 K, 1)	note 1	-	460	· <u>·</u> · '	μV
Noise*, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	note 2	-	20	45	μV
Quiescent current		-	10	_	μΑ
Element dimensions			2 x 1 nominal		mm
Field of view			see page 1		


^{*}These parameters are 100% tested with statistical sample quality inspection.

FET Characteristics (at T_{amb} = 22 °C ± 3 °C)

		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{P(GS)}	-1.2		-0.5	V
Transfer conductance $V_{GS} = 0$, $V_{DS} = 6$ V, $f = 1$ kHz	9fso	1.3	<u> </u>	_	mAV ⁻¹

- 1. At an energy level of 25 μ Wcm⁻² at the element.
- 2. Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT

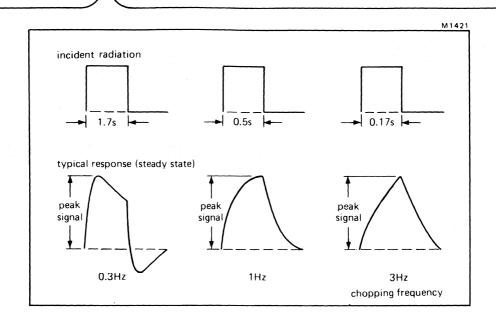
DEFINITIONS

1. Responsivity VW-1

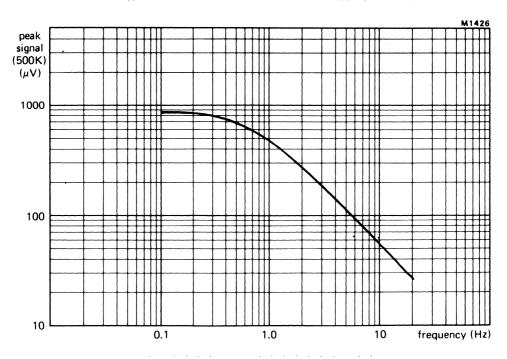
This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power. The published values of responsivity are qualified by figures in brackets, for example (10 μ m, 10). The 10 μ m denotes the wavelength of the infrared radiation generating the signal voltage, while the 10 indicates that the radiation is chopped at a frequency of 10 Hz.

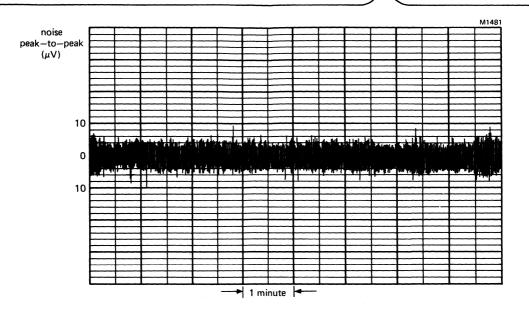
2. Noise Equivalent Power (N.E.P.) WHz-1/2

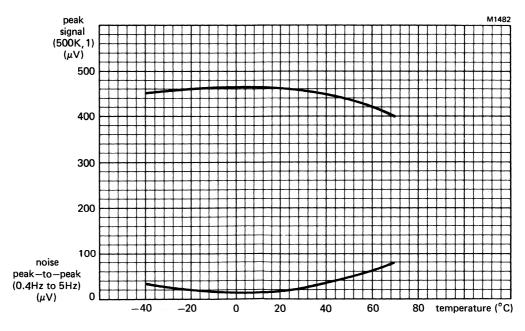
This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz- $\frac{1}{2}$. As with responsivity the relevant test conditions must be specified, for example (10 μ m, 10, 1). The 10 μ m is the wavelength of the incident radiation, 10 is the chopping frequency in Hz, and 1 is the bandwidth in Hz.

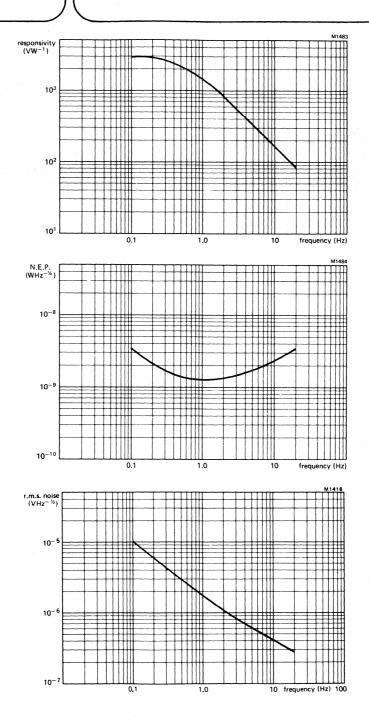

As part of the Quality Assurance programme, the sensors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	ijγ i	1
68-2-1	Aa	Low Temperature Storage	−55 °C	2000 hours	2
68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3


- 1. The sensors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.


Typical normalized window transmission characteristic


Typical response (steady state) for a given chopping frequency


Typical peak signal as a function of frequency (energy level 25 $\mu W cm^{-2}$ at the element)

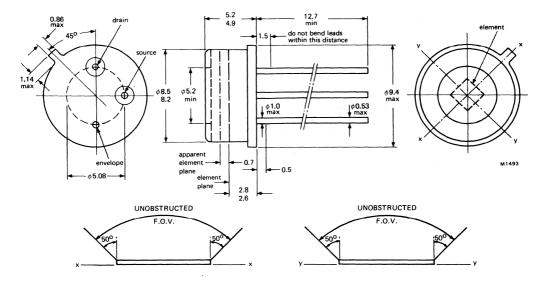
Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical peak signal and peak-to-peak noise as functions of temperature (peak signal energy level, 25 μWcm⁻² at the element)

Typical responsivity, N.E.P., and r.m.s. noise as functions of frequency, using recommended circuit.

SINGLE ELEMENT PYROELECTRIC INFRARED SENSOR

This is an infrared sensitive device intended for battery operated passive infrared movement detectors such as intruder alarms and light switches which use low grade or no optical focusing arrangements. The element is combined with a single impedance converting amplifier which is specially designed to function from low voltage supplies with low current consumption. The sensor is sealed in a low profile TO-39 can with a window optically coated to restrict response to wavelengths greater than $6.5 \, \mu m$.


QUICK REFERENCE DATA

Spectral response		6.5 ± 0.5 to >14	μm
Responsivity (10 μ m, 10)	typ.	75	VW ⁻¹
Peak signal (500 K, 1) note 1, page 3	typ.	460	μV
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	typ.	15	μV -
Element dimensions	nom.	2 x 2	mm
Operating voltage	min.	3	V
Optimum operating frequency range		0.1 to 20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS - OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49H (TO-39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. In the United Kindom disposal of large quantities should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	30	٧
Temperature, operating range		-40 to +70	οС
Temperature, storage range		-55 to +85	oC
Lead soldering temperature. ≥ 6 mm from header, told ≤ 3 s max.		+350	оC

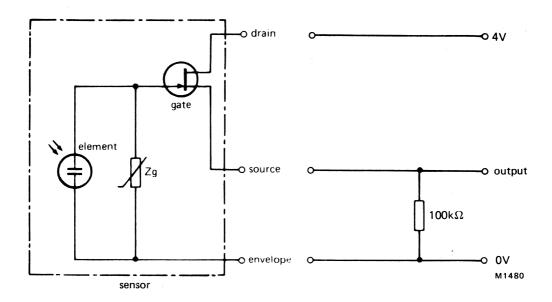
OPERATING CONDITIONS

	min.	max.	
Voltage (operating note 5)	3	10	, , , , , v
Frequency (operating note 5)	0.1	20	Hz

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of the element will produce a positive going signal at the output.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Before testing, due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn,
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit)

		min.	typ.	max.	
Spectral response		6.5 ± 0.5	a state	>14	μm
Responsivity* (10 μm, 10)		50	75	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)		· ·-	5.0×10^{-9}	-	$WHz^{-\frac{1}{2}}$
Peak signal (500 K, 1)	note 1	_	460	-	μV
Noise*, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	note 2		15	45	μV
Quiescent current			10		μΑ
Element dimensions			2 x 2 nominal		mm
Field of view			see page 1		

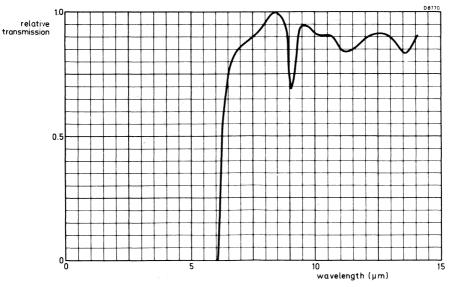

^{*}These parameters are 100% tested with statistical sample quality inspection.

FET Characteristics (at T_{amb} = 22 °C ± 3 °C)

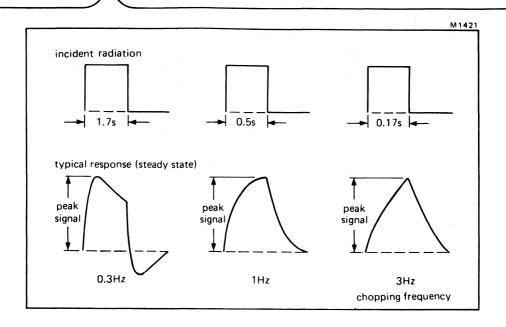
		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A, V_{DS} = 6 V$	V _{P(GS)}	-1.4	· .	0.5	V
Transfer conductance $V_{GS} = 0$, $V_{DS} = 6$ V, $f = 1$ kHz	gfso gfso	1.3		_	mAV ⁻¹

- 1. At an energy level of 25 μ Wcm⁻² at the detector.
- 2. Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

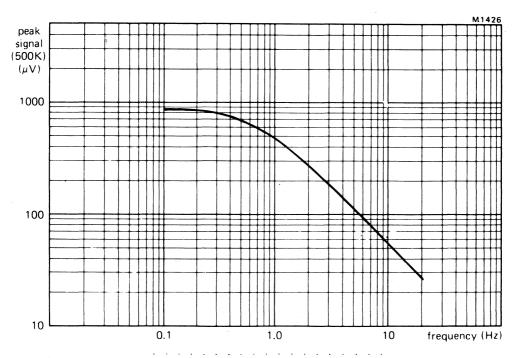
RECOMMENDED CIRCUIT

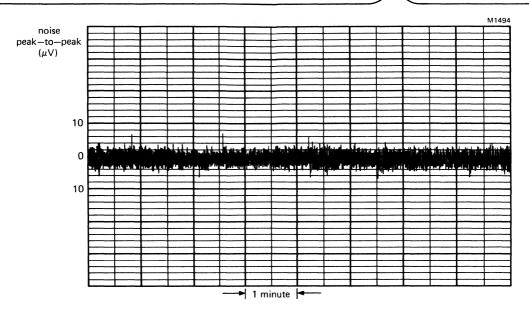

DEFINITIONS

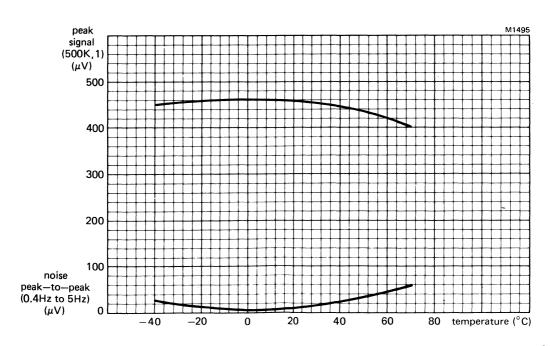
- 1. Responsivity VW-1
 - This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power. The published values of responsivity are qualified by figures in brackets, for example (10 μ m, 10). The 10 μ m denotes the wavelength of the infrared radiation generating the signal voltage, while the 10 indicates that the radiation is chopped at a frequency of 10 Hz.
- 2. Noise Equivalent Power (N.E.P.) WHz^{-1/2}
 This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz^{-1/2}. As with responsivity the relevant test conditions must be specified, for example (10 μm, 10, 1). The 10 μm is the wavelength of the incident radiation, 10 is the chopping frequency in Hz, and 1 is the bandwidth in Hz.

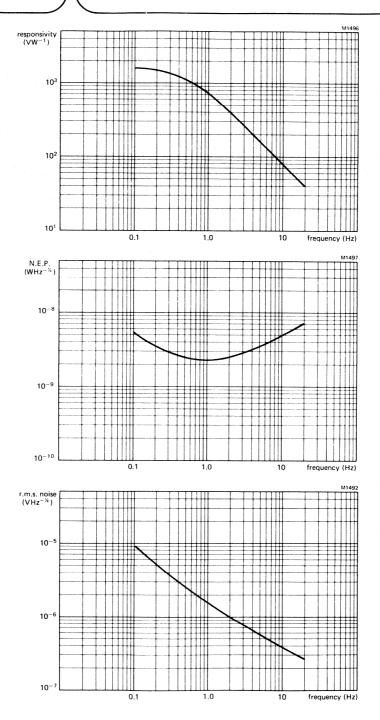

As part of the Quality Assurance programme, the sensors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
	68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
	68-2-21	Ub	Lead Fatigue	4 cycles		1
	68-2-1	Aa	Low Temperature Storage	_55 °C	2000 hours	2
	68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
	68-2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
	68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
	68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
	68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3


- 1. The sensors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.


Typical normalized window transmission characteristic


Typical response (steady state) for a given chopping frequency


Typical peak signal as a function of frequency (energy level 25 μ Wcm⁻² at the element)

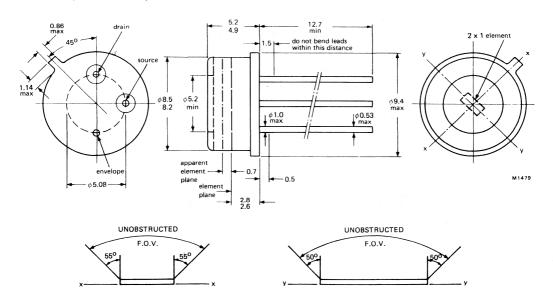
Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical peak signal and peak-to-peak noise as functions of temperature (peak signal energy level, 25 μ Wcm⁻² at the element)

Typical responsivity, N.E.P., and r.m.s. noise as functions of frequency, using recommended circuit.

SINGLE ELEMENT PYROELECTRIC INFRARED SENSOR

This is an infrared sensitive device incorporating a single impedance converting amplifier which is specially designed to function from low voltage supplies with low current consumption. The sensor is sealed in a low profile TO-39 can with an uncoated silicon window.


QUICK REFERENCE DATA

	1.0 to >15	μm	
typ.	130	VW-1	
typ.	3.0 × 10 ⁻⁹	WHz ^{-½}	
typ.	385	$\mu V_{_{0}}$	
typ.	20	μV	•
nom.	2 x 1	mm	
min.	3	V	
	0.1 to 20	Hz	
	typ. typ. typ. nom.	typ. 3.0 x 10 ⁻⁹ typ. 385 typ. 20 nom. 2 x 1 min. 3	typ. 130 VW^{-1} typ. $3.0 \times 10^{-9} \text{ WHz}^{-\frac{1}{2}}$ typ. $385 \mu\text{V}$ typ. $20 \mu\text{V}$ nom. $2 \times 1 \text{mm}$ min. 3 V

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS - OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49H (TO-39 variant)

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	30	V
Temperature, operating range		-40 to +70	οС
Temperature, storage range		-55 to +85	оС
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3$ s		+350	оС

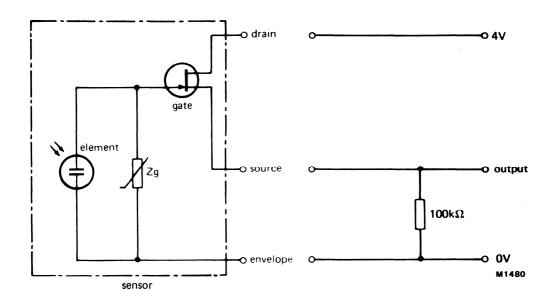
OPERATING CONDITIONS

	min.	max	•
Voltage (operating note 5)	3	10	V
Frequency (operating note 5)	0.1	20	Hz

- The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of the element will produce a positive going signal at the output.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- Before testing, due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist staps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.

CHARACTERISTICS	(at Tamb =	= 22 °C ± 3 °C and v	with recommended circuit)
-----------------	------------	----------------------	---------------------------

		min.	typ.	max.	
Spectral response		1.0	-	>15	μm
Responsivity* (500 K, 10)		90	130	_	VW ⁻¹
N.E.P. (500 K, 10, 1)			3.0×10^{-9}	_ '	WHz ^{-½}
Peak signal (500 K, 1)	note 1	_	385	· —	μV
Noise*, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	note 2		20	45	μV
Quiescent current			10	-	μΑ
Element dimensions			2 x 1 nominal		mm
Field of view			see page 1		


^{*}These parameters are 100% tested with statistical sample quality inspection.

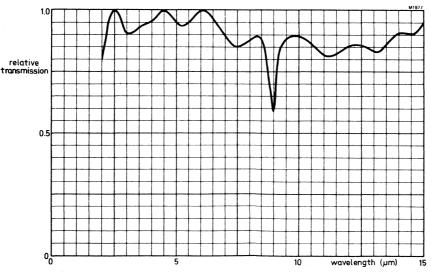
FET characteristics (at T_{amb} = 22 °C ± 3 °C)

		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{P(GS)}	-1.4	_	-0.5	V
Transfer conductance VGS = 0, VDS = 6 V, f = 1 kHz	9fso	1.3	_		mAV ⁻¹

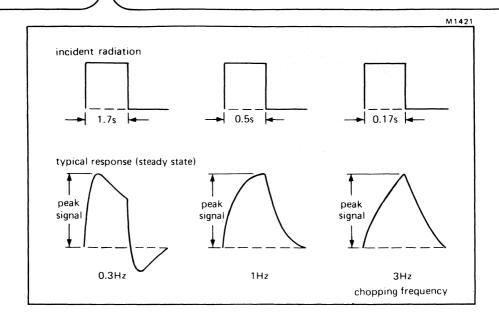
- 1. At any energy level of 25 μ Wcm⁻² at the element.
- 2. Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

RECOMMENDED CIRCUIT

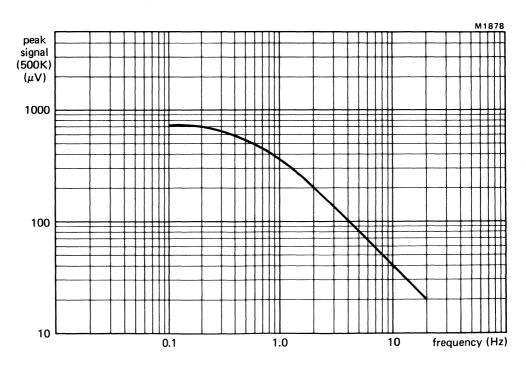
DEFINITIONS

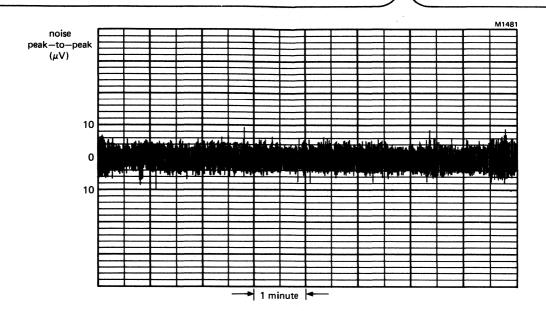

- 1. Responsivity VW⁻¹
 - This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power. The published values of responsivity are qualified by figures in brackets, for example (500 K, 10). The 500 K denotes the temperature of the black body source of the infrared radiation generating the signal voltage, while the 10 indicates that the radiation is chopped at a frequency of 10 Hz.
- 2. Noise Equivalent Power (N.E.P.) WHz^{-1/2}
 This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz^{-1/2}. As with responsivity the relevant test conditions must be specified, for example (500 K, 10, 1). The 500 K is the temperature of the black body source of the incident radiation, 10 is the chopping frequency in Hz, and 1 is the bandwidth in Hz.

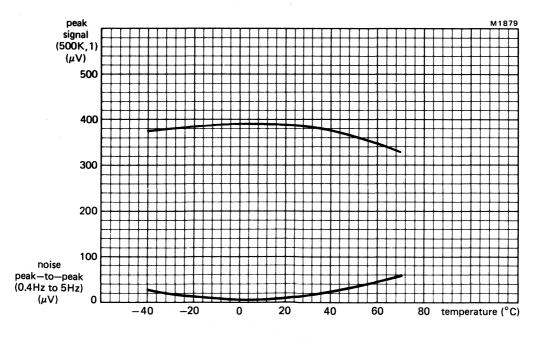
MECHANICAL AND ENVIRONMENTAL STANDARDS

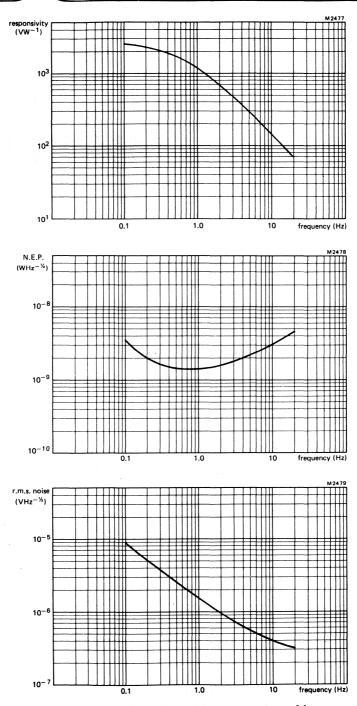

As part of the Quality Assurance programme, the sensors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	-	1
68-2-1	Aa	Low Temperature Storage	_55 °C	2000 hours	2
68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3


- The sensors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.


Typical normalized window transmission characteristic


Typical response (steady state) for a given chopping frequency


Typical peak signal as a function of frequency (energy level 25 $\mu \mathrm{Wcm^{-2}}$ at the element)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

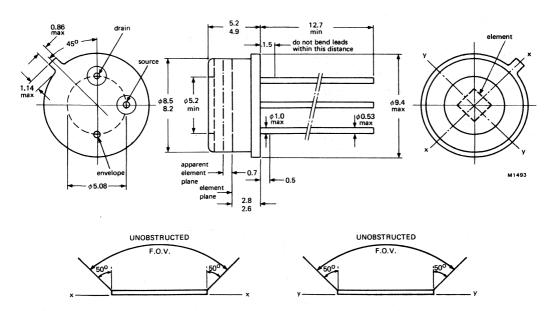
Typical peak signal and peak-to-peak noise as functions of temperature (peak signal energy level, 25 µWcm⁻² at the sensor)

Typical responsivity, N.E.P., and r.m.s. noise as functions of frequency using recommended circuit.

SINGLE ELEMENT PYROELECTRIC INFRARED SENSOR

This is an infrared sensitive device incorporating a single impedance converting amplifier which is specifically designed to function from low voltage supplies with low current consumption. The sensor is sealed in a low profile TO-39 can with an uncoated silicon window.

QUICK REFERENCE DATA


Spectral response	Andrew Company	1.0 to >15	μm
Responsivity (500 K, 10)	typ.	65	VW ⁻¹
Noise Equivalent Power (N.E.P.) (500 K, 10, 1)	typ.	6.0 × 10 ⁻⁹	WHz ^{-½}
Peak signal (500 K, 1) note 1, page 3	typ.	385	μV
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	typ.	15	μV
Element dimensions	nom.	2 x 2	mm .
Operating voltage	min.	3	V
Optimum operating frequency range		0.1 to 20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49H (TO-39 variant)

Dimensions in mm ◀

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (See operating note 7).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	30	· V
Temperature, operating range		-40 to +70	oC
Temperature, storage range		-55 to +85	oC
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3$ s max.		+350	oC

OPERATING CONDITIONS

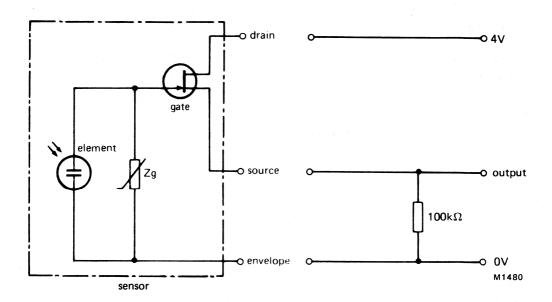
	min.	max.	
Voltage (operating note 5)	3	10	V
Frequency (operating note 5)	0.1	20	Hz

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of the element will produce a positive going signal at the output.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Before testing, due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 °C \pm 3 °C and with recommended circuit)

		min.	typ.	max.	
Spectral response		1.0	-	>15	μm
Responsivity* (500 K, 10)		45	65		VW ⁻¹
N.E.P. (500 K, 10, 1)			6.0×10^{-9}	-	WHz ^{-1/2}
Peak signal (500 K, 1)	note 1	_	385	· . 	μV
Noise*, peak-to-peak (bandwidth 0.4 Hz to 5 Hz)	note 2	_	15	45	μV
Quiescent current			10	warm.	μΑ
Element dimensions			2 x 2 nominal		mm
Field of view			see page 1		


^{*}These parameters are 100% tested with statistical sample quality inspection.

FET Characteristics (at T_{amb} = 22 °C ± 3 °C)

		min.	typ.	max.	
Gate-source cut-off voltage $I_D = 0.1 \mu A$, $V_{DS} = 6 V$	V _{P(GS)}	-1.4		0.5	V
Transfer conductance V _{GS} = 0, V _{DS} = 6 V, f = 1 kHz	gfso	1.3	· •	_	mAV ⁻¹

- 1. At an energy level of 25 μ Wcm⁻² at the element.
- 2. Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave. Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 2.

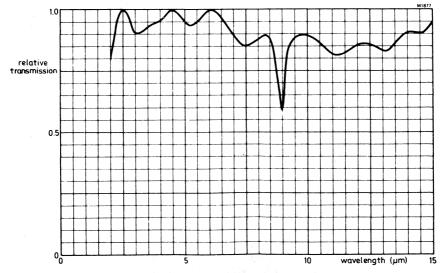
RECOMMENDED CIRCUIT

DEFINITIONS

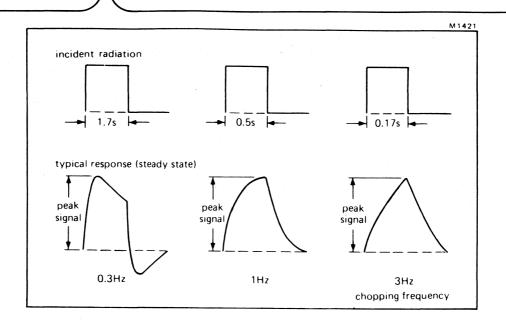
1. Responsivity VW⁻¹

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power. The published values of responsivity are qualified by figures in brackets, for example (500 K, 10). The 500 K denotes the temperature of the black body source of the infrared radiation generating the signal voltage, while the 10 indicates that the radiation is chopped at a frequency of 10 Hz.

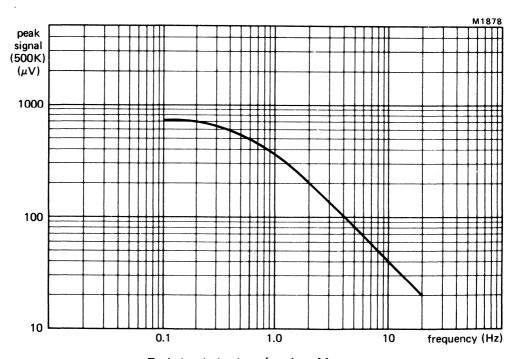
2. Noise Equivalent Power (N.E.P.) WHz^{-1/2}

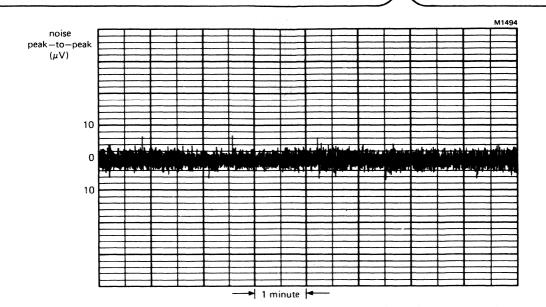

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$. As with responsivity the relevant test conditions must be specified, for example (500 K, 10, 1). The 500 K is the temperature of the black body source of the incident radiation, 10 is the chopping frequency in Hz, and 1 is the bandwidth in Hz.

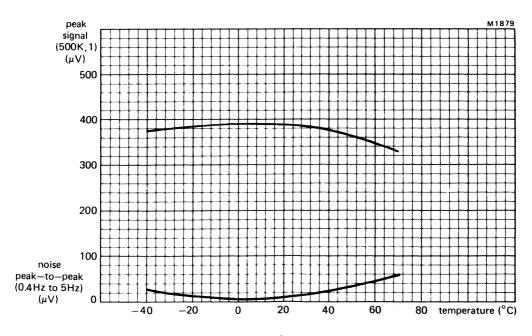
MECHANICAL AND ENVIRONMENTAL STANDARDS

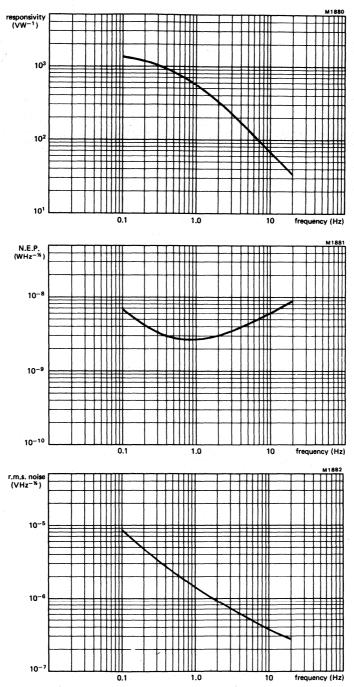

As part of the Quality Assurance programme, the sensors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	, i <u>-</u>	1
68-2-1	Aa	Low Temperature Storage	_55 °C	2000 hours	2
68-2-2	Ва	High Temperature Storage	+85 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	–55 °C to +85 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3


- The sensors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The sensors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.


Typical normalized window transmission characteristic


Typical response (steady state) for a given chopping frequency


Typical peak signal as a function of frequency (energy level 25 $\mu W cm^{-2}$ at the element)

Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz)

Typical peak signal and peak-to-peak noise as functions of temperature (peak signal energy level, 25 µWcm⁻² at the sensor)

Typical responsivity, N.E.P., and r.m.s. noise as functions of frequency, using recommended circuit.

TWO-CHANNEL PYROELECTRIC INFRARED SENSOR

Special features: Two channels in one encapsulation to enable

intelligent signal processing. Details of recommended scheme available on request.

Application: For use in passive IR intruder alarms.

Element configuration: Two series-connected interdigitated pairs.

Electrical: An impedance converting amplifier per channel,

each having separate source connections.

Window: Daylight filtered silicon.

Measured in source follower mode with 100 k Ω load resistor.

QUICK REFERENCE DATA

min. typ. max. 6.5 ± 0.5 Spectral response >14 μm Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz) 30 55 μV Peak signal (500K, 1) with incident energy of 25 μWcm⁻² 570 850 1450 μV

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES.

MECHANICAL DATA

Dimensions in mm.

Fig.1 SOT-49N.

See page 2 for outline, element configuration and field of view diagrams.

MECHANICAL DATA

Fig.1 SOT-49N.

Dimensions in mm

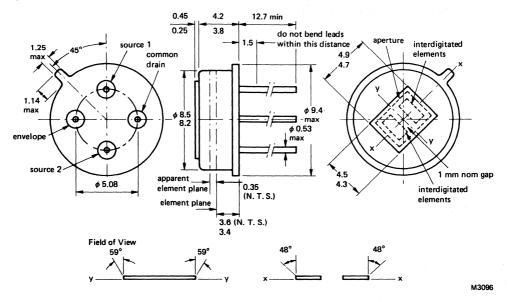
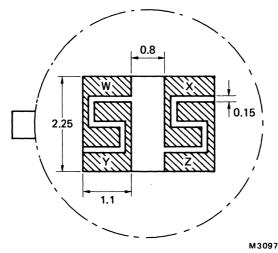



Fig.2 Element configuration.

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed.
 Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device. (see operating note 7)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	max.	20	V
Temperature, operating range		-10 to +50	°C
Temperature, storage range		-30 to +70	оС
Lead soldering temperature, ≥6 mm from header, t _{sld} ≤3 s		+350	оС

OPERATING NOTES

- The case potential must not be allowed to become positive with respect to the other three terminals.
- 2. It is inadvisable to operate the sensor at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the sensor must be firmly mounted.
- 4. An increase in temperature of elements W and Y will produce a positive going signal at the output. For elements X and Z, the corresponding output will be negative going.
- 5. The sensor will operate outside the quoted range but may have a degraded performance.
- 6. Due to the high sensitivity of these sensors, care must be taken to ensure that the devices are allowed to become thermally stable before testing.
- 7. To avoid the possibility of electrostatic damage, precautions similar to those used with CMOS devices are necessary, namely:
 - a) Earthed wrist straps should be worn.
 - b) Table tops or other working surfaces should be conductive and earthed.
 - c) Anti-static clothing should be worn, (no wool, silk or synthetic fibres).
 - d) No electrical testing should be carried out without specific, approved and written test procedures.
 - e) To prevent the development of damaging transient voltages, devices should not be inserted into or removed from test fixtures with power applied.

CHARACTERISTICS (at T_{amb} = 22 o C \pm 3 o C and with recommended circuit)

Measured in source follower mode with 100 $k\Omega$ load resistor.

		min.	typ.	max.	
Spectral response		6.5 ± 0.5	-	>14	μm
Noise, peak-to-peak (bandwidth 0.4 Hz to 5 Hz) (note 1)		=	30	55	μ∨
Peak signal (500K, 1) with incident energy of 25 μ Wcm ⁻²		570	850	1450	μ∨
Dual element pair matching (note 2)			 - () - ()	±20	%
Element dimensions and configuration			see page 2		
Field of view			see page 2		
F.E.T. Characteristics (at T _{amb} = 22 °C ± 3 °C	C)				
Gate-source cut-off voltage			17		
$I_D = 0.1 \mu\text{A}, V_{DS} = 6 \text{V}$	V _{(P)GS}	-1.4	_	-0.5	V
Transfer conductance $V_{GS} = 0$, $V_{DS} = 6 V$, $f = 1 kHz$	9fso	1.3	- -	· . -	mAV ⁻¹

Notes

- Using low noise filter with 3 dB bandwidth (0.4 Hz to 5 Hz) and roll off at 12 dB per octave.
 Sensors tested for 1 minute under stable electrical and thermal conditions; see operating note 6 on page 3.
- page 3.

 2. The matching of the elements is derived from $\frac{S_W S_X}{\frac{1}{2}(S_W + S_X)} \times 100\%$, where S_W and S_X are the peak signal values of the respective elements. A similar calculation is applicable to elements Z and Y.

RECOMMENDED CIRCUIT

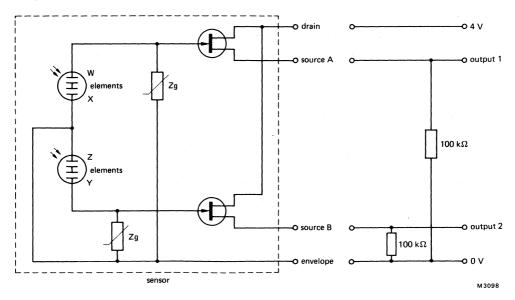


Fig.3.

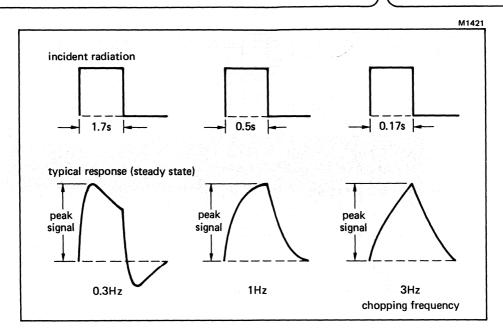


Fig.4 Typical response (steady state) for a given chopping frequency.

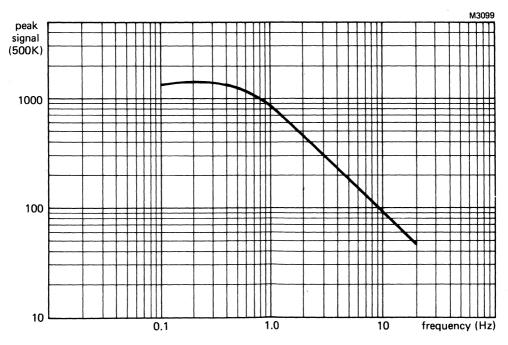


Fig.5 Typical peak signal as a function of frequency (energy level 25 μ Wcm⁻² at the element with the other element of the pair screened).

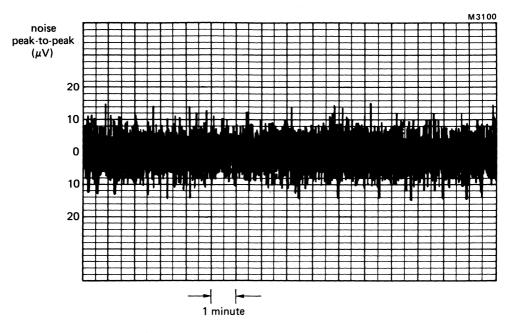


Fig. 6 Typical peak-to-peak noise as a function of time (filter bandwidth 0.4 Hz to 5 Hz).

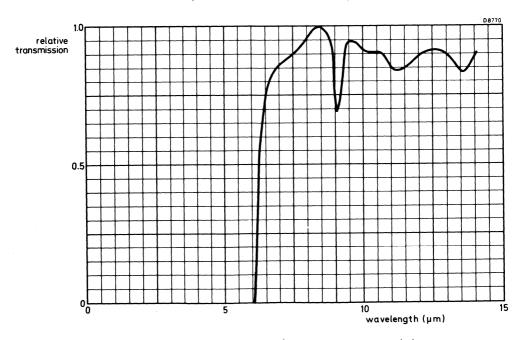


Fig.7 Typical normalized window transmission characteristic.

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors will be assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
	68-2-20	Та	Solderability	+235 ^O C, 1.5 mm from header	5 seconds	2
	68-2-21	Ub	Lead Fatigue	4 cycles	_	2
	68-2-1	Aa	Low Temperature Storage	-40 °C	2000 hours	2
	68-2-2	Ва	High Temperature Storage	+70 °C	2000 hours	2
	68-2-14	Nb	Change of Temperature	-40 °C to +70 °C	10 cycles	2
	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
	68-2-27	Ea ·	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
	68-2-20	Tb	Resistance to Solder Heat	+350 ^o C, 6 mm from header	3 seconds	3

- 1. The detectors to be checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors to be checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	book	section	type no.	book	section	type no.	book	section
BA220	S 1	SD	BAS29	S7/S1	Mm/SD	BAV99	S7/S1	Mm/SD
BA221	S1	SD	BAS31	S7/S1	Mm/SD	BAV 100	S7/S1	Mm/SD
BA223	S1	T	BAS32	S7/S1	Mm/SD	BAV101	S7/S1	Mm/SD
BA281	S1	SD	BAS35	S7/S1	Mm/SD	BAV 102	S7/S1	Mm/SD
BA314	S1	Vrg	BAS45	S1	SD	BAV103	S7/S1	Mm/SD
BA315	S1	Vrg	BAS56	S1/S7	SD/Mm	BAW56	s7/s1	Mm/SD
BA316	S1	SD	BAT17	S7/S1	Mm/T	BAW62	S1	SD
BA317	S1	SD	BAT18	S7/S1	Mm/T	BAX12	S1	SD
BA318	S1	SD	BAT54	S1/S7	SD/Mm	BAX14	S1	SD
BA423	S1	T	BAT74	S1/S7	SD/Mm	BAX18	S1	SD
BA480	S1	T	BAT81	S1	T	BAY80	S1	SD
BA481	S1	T	BAT82	S1	T	BB112	S1	T
BA482	S1	T	BAT83	S1	T	BB119	S1	T
BA483	S1	T	BAT85	S1	T	BB130	S1	T
BA484	S1	T	BAT86	S1	T	BB204B	S1	T .
BA682	S1/S7	T/Mm	BAV10	S1	SD	BB204G	S1	T
BA683	S1/S7	T/Mm	BAV18	S1	SD	BB212	S1	T
BAS11	S1	SD	BAV19	S1	SD	BB215	\$7/\$1	Mm/SD
BAS15	S1	SD	BAV20	S1	SD	BB219	S7/S1	Mm/SD
BAS 16	S7/S1	Mm/SD	BAV21	S1	SD	BB405B	S1	T
BAS17	S7/S1	Mm/Vrg	BAV23	S7/S1	Mm/SD	BB417	S1	T
BAS19	S7/S1	Mm/SD	BAV45	S1	Sp	BB809	S1	T
BAS20	S7/S1	Mm/SD	BAV45A	S1	Sp	BB909A	S1	T
BAS21	S7/S1	Mm/SD	BAV70	S7/S1	Mm/SD	BB909B	S 1	T
BAS28	S7/S1	Mm/SD	BAV74	S1	SD	BBY31	S7/S1	Mm/T

Mm = Microminiature semiconductors

for hybrid circuits SD = Small-signal diodes Sp = Special diodes

T = Tuner diodes

Vrg = Voltage regulator diodes Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	sectio
BBY39	S1	T	BC639	53	Sm	BCW69;R	s7	Mm
BBY40	S7/S1	Mm/T	BC640	53	Sm	BCW70;R	S 7	Mm
BC 107	S 3	Sm	BC807	S 7	Mm	BCW71;R	57	Mm
BC108	S 3	Sm	BC808	S 7	Mm	BCW72:R	s7	Mm
BC 109	S 3	Sm	BC817	S7	Mm	BCW81;R	s7	Mm
BC140	\$3	Sm	BC818	S 7	Mm	BCW89;R	S 7	Mm
BC 141	S 3	Sm	BC846	57	Mm	BCX17;R	S7	Mm
BC160	S3	Sm	BC847	S7	Mm	BCX18;R	S 7	Mm
BC 161	S 3	Sm	BC848	S 7	Mm	BCX19;R	S 7	Mm
BC177	s3	Sm	BC849	S7	Mm	BCX20;R	s 7	Mm
BC178	s3	Sm	BC850	S7	Mm	BCX51	s7	Mm
BC179	S 3	Sm	BC856	S7	Mm	BCX52	S 7	Mm
BC264A	S5	FET	BC857	S7	Mm	BCX53	s7	Mm
BC264B	S 5	FET	BC858	S 7	Mm	BCX54	S 7	Mm
BC264C	\$5	FET	BC859	S7	Mm	BCX55	\$7	Mm
BC264D	S5	FET	BC860	S 7	Mm	BCX56	S 7	Mm
BC327;A	\$3	Sm	BC868	S7	Mm	BCX58	S3	Sm
BC328	S3	Sm	BC869	S 7	Mm	BCX59	S 3	Sm
BC337;A	S3	Sm	BCF29;R	S 7	Mm ·	BCX70*	s7	Mm
BC338	S 3	Sm	BCF30;R	S7	Mm	BCX71*	S 7	Mm
BC368	S3	Sm	BCF32;R	S 7	Mm	BCX78	S 3	Sm
BC369	S3	Sm	BCF33;R	S7	Mm	BCX79	S3	Sm
BC375	S3	Sm	BCF70;R	s7	Mm	BCY56	S3	Sm
BC376	S3	Sm	BCF81;R	S 7	Mm	BCY57	S 3	Sm
BC516	S 3	Sm	BCV26	S 7	Mm	BCY58	S 3	Sm
BC517	S 3	Sm	BCV27	S 7	Mm	BCY59	S 3	Sm
BC546	S3	Sm	BCV61	S7	Mm	BCY65	S3	Sm
BC547	S3	Sm	BCV62	S 7	Mm	BCY70	S3	Sm
BC548	S3	Sm	BCV63	S7	Mm	BCY71	S3	Sm
BC549	S 3	Sm	BCV64	S7	Mm	BCY72	S 3	Sm
BC550	S3	Sm	BCV65	S7	Mm	BCY78	\$3	Sm
BC556	S 3	Sm	BCV71;R	S7	Mm	BCY79	S 3	Sm
BC557	S3	Sm	BCV72;R	S7	Mm	BCY87	S3	Sm
BC558	S3	Sm	BCW29;R	S 7	Mm	BCY88	S3	Sm
BC559	S 3	Sm	BCW30;R	S 7	Mm	BCY89	S 3	Sm
BC560	S3	Sm	BCW31;R	S 7	Mm	BD131	S4a	P
BC635	S3	Sm	BCW32;R	S 7	Mm	BD132	S4a	P
BC636	S3	Sm	BCW33;R	S7	Mm	BD135	S4a	P
BC637	S 3	Sm	BCW60*	S 7	Mm	BD136	S4a	P
BC638	S 3	Sm	BCW61*	S 7	Mm	BD137	S4a	P

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semicondcutors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	section
BD138	54a	P	BD244A	S4a	p	BD816	S4a	P
BD139	S4a	p '	BD244B	S4a	P	BD817	S4a	P
BD140	S4a	P	BD244C	54a	P	BD818	54a	Р
BD201	54a	P	BD329	54a	P	BD825	S4a	P
BD202	S4a	Р	BD330	54a	P	BD826	5 4 a	P
BD203	S4a	P	BD331	5 4 a	P	BD827	S4a	P
BD204	S4a	P	BD332	S4a	p	BD828	5 4 a	P
BD226	S4a	P	BD333	S4a	P	BD829	S4a	P
BD227	S4a	P	BD334	54a	P	BD830	54a	P
BD228	S4a	P	BD335	S4a	P	BD839	S4a	P
BD229	54a	P	BD336	S4a	P	BD840	S4a	P
BD230	S4a	P	BD337	S4a	P	BD841	S4a	P
BD231	S4a	P	BD338	S4a	P	BD842	S4a	Р
BD233	S4a	P	BD433	S4a	P	BD843	S4a	P
BD234	54a	P	BD434	S4a	P	BD844	S4a	P
BD235	S4a	P	BD435	S4a	P	BD845	S4a	p
BD236	54a	P	BD436	54a	p v	BD846	S4a	P
BD237	S4a	P	BD437	S4a	P	BD847	S4a	P
BD237	S4a	b E	BD437	S4a	P	BD848	54a	P
BD239	54a	P	BD645	S4a	P	BD849	S4a	P
BD239A	S4a	P	BD646	S4a	P	BD850	S4a	P
BD239B	54a	P	BD647	54a	p	BD933	54a	P
BD239C	54a 54a	P	BD648	54a 54a	P	BD933	54a	P
			1	54a 54a	P	BD935	54a	p
BD240 BD240A	S4a S4a	P P	BD649 BD650	54a 54a	P	BD936	54a	Þ
DD 2 A OD	S4a	P	BD651	S4a	P	BD937	S4a	P
BD240B BD240C	54a 54a	P P	BD652	54a 54a	P	BD938	54a 54a	P
BD240C	54a 54a	P	BD675	54a	P	BD939	54a 54a	P
		P P	BD676	54a 54a	P	BD939	54a	P
BD241A BD241B	54a 54a	P	BD677	54a	P	BD941	54a	P
BD241C	S4a	P	BD678	S4a	P	BD942	S4a	P
BD241C	54a 54a	P P	BD678	54a 54a	P P	BD943	54a 54a	P
		P	1 .	54a 54a	P P	BD943	54a 54a	P
BD242A	S4a	P P	BD680	54a 54a	P P	BD944 BD945	54a 54a	Þ
BD242B BD242C	S4a S4a	P P	BD681 BD682	54a 54a	P P	BD945 BD946	54a 54a	Р
		_			_	22045		_
BD243	S4a	P	BD683	S4a	P	BD947	S4a	P
BD243A	S4a	P	BD684	S4a	P	BD948	S4a	P
BD243B	S4a	P	BD813	S4a	P	BD949	S4a	P
BD243C	54a	P	BD814	S4a	P	BD950	S4a	P
BD244	S4a	P	BD815	S4a	P	BD951	S4a	P

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BD952	5 4 a	P	BDT60A	54a	P	BDV64C	S4a	P
BD953	S4a	P	BDT60B	S4a	P 1	BDV65	S4a	p
BD954	S4a	P	BDT6OC	S4a	P	BDV65A	54a	p
BD955	S4a	P	BDT61	S4a	p	BDV65B	S4a	P
BD956	S4a	P	BDT61A	S4a	P	BDV65C	S4a	P
BDT20	S4a	P	BDT61B	S4a	P	BDV66A	S4a	P
BDT21	S4a	P	BDT61C	5 4 a	P	BDV66B	S4a	P
BDT29	S4a	P	BDT62	S4a	P	BDV66C	S4a	P
BDT29A	S4a	P	BDT62A	S4a	P	BDV66D	S4a	р
BDT29B	S4a	P	BDT62B	S4a	P	BDV67A	S4a	P ,
BDT29C	S4a	P	BDT62C	54a	P	BDV67B	S4a	P
BDT30	S4a	P	BDT63	S4a	P	BDV67C	S4a	P
BDT3OA	S4a	P	BDT63A	S4a	P	BDV67D	S4a	P
BDT30B	S4a	P	BDT63B	S4a	P	BDV91	S4a	P
BDT30C	5 4 a	P	BDT63C	S4a	P	BDV92	S4a	P
BDT31	S4a	P	BDT64	S4a	P	BDV93	S4a	P
BDT31A	S4a	P	BDT64A	S4a	P	BDV94	S4a	p
BDT31B	S4a	P	BDT64B	S4a	P	BDV95	S4a	P
BDT31C	S4a	P	BDT64C	5 4 a	P	BDV96	S4a	P
BDT32	S4a	P	BDT65	S4a	P	BDW55	S4a	P
BDT32A	S4a	P	BDT65A	S4a	P	BDW56	S4a	P
BDT32B	S4a	P	BDT65B	S4a	P .	BDW57	S4a	P
BDT32C	54a	P	BDT65C	S4a	P	BDW58	54a	P
BDT41	S4a	P	BDT81	S4a	P	BDW59	S4a	P
BDT41A	S4a	P	BDT82	S4a	P	BDW60	S4a	P
BDT41B	S4a	P	BDT83	S4a	P	BDX35	S4a	P
BDT41C	S4a	P	BDT84	S4a	P	BDX36	54a	P
BDT42	S4a	P	BDT85	S4a	P	BDX37	S4a	P
BDT42A	S4a	P	BDT86	S4a	P	BDX42	S4a	P
BDT42B	S 4 a	P	BDT87	S4a	P	BDX43	S4a	P
BDT42C	S4a	p	BDT88	S4a	P	BDX44	S4a	P
BDT51	S4a	P	BDT91	S4a	P	BDX45	S4a	P
BDT52	S4a	P	BDT92	54a	P	BDX46	S4a	P
BDT53	S4a	P	BDT93	S4a	P	BDX47	S4a	P
BDT54	S4a	P	BDT94	S4a	P	BDX62	S4a	P
BDT55	S4a	P	BDT95	S4a	P	BDX62A	S4a	P
BDT56	5 4 a	P	BDT96	S4a	P	BDX62B	S4a	P
BDT57	S4a	P	BDV64	S4a	P	BDX62C	S4a	P
BDT58	S4a	P	BDV64A	S4a	P	BDX63	S4a	P
BDT60	S4a	P	BDV64B	S4a	P	BDX63A	S4a	P

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BDX63B	S4a	p	BF240	s 3	Sm	BF622	s7	Mm
BDX63C	S4a	P	BF241	53	Sm	BF623	S7	Mm
BDX64	S4a	P	BF245A	S5	FET	BF660:R	S 7	Mm
BDX64A	S4a	P	BF245B	S5	FET	BF689K	S10	WBT
BDX64B	S4a	P	BF245C	\$5	FET	BF763	S10	WBT
BDX64C	S4a	P	BF247A	S 5	FET	BF767	s7	Mm
BDX65	S4a	P	BF247B	\$5	FET	BF820	S7	Mm
BDX65A	S4a	P	BF247C	S5	FET	BF821	S 7	Mm
BDX65B	S4a	p	BF256A	\$5	FET	BF822	s7	Mm
BDX65C	S4a	\mathbf{p}	BF256B	S 5	FET	BF823	S7	Mm
BDX66	S4a	P	BF256C	S5	FET	BF824	S 7	Mm
BDX66A	S4a	P	BF324	\$3	Sm	BF840	S7	Mm
BDX66B	S4a	P	BF370	\$3.	Sm	BF841	S7	Mm
BDX66C	S4a	P	BF410A	S5	FET	BF926	S 3	Sm
BDX67	5 4 a	P	BF410B	S 5	FET	BF936	S 3	Sm
BDX67A	S4a	P	BF410C	S5	FET	BF939	s3	Sm
BDX67B	S4a	P	BF410D	\$5	FET	BF960	S5	FET
BDX67C	S4a	P	BF420	S 3	Sm	BF964	S5	FET
BDX68	S4a	P	BF421	S3	Sm	BF966	S5	FET
BDX68A	S4a	P	BF422	s3	Sm	BF967	S 3	Sm
BDX68B	S4a	P	BF423	S3	Sm	BF970	s3	Sm
BDX68C	S4a	P	BF450	S3	Sm	BF970A	s3	Sm
BDX69	S4a	P	BF451	S3	Sm	BF979	S3	Sm
BDX69A	S4a	P	BF483	\$3	Sm	BF980	S5	FET
BDX69B	S4a	P • 1	BF485	S 3	Sm	BF981	\$5	FET
BDX69C	S4a	P :	BF487	s3	Sm	BF982	S 5	FET
BDX77	S4a	P 2	BF494	\$3	Sm	BF989	S7/S5	Mm/FET
BDX78	S4a	P	BF495	S3	Sm	BF990	S7/S5	Mm/FET
BDX91	S4a	P	BF496	S 3	Sm	BF991	S7/S5	Mm/FET
BDX92	S4a	P	BF510	S7/S5	Mm/FET	BF992	S7/S5	Mm/FET
BDX93	S4a	P	BF511	s7/s5	Mm/FET	BF994	S7/S5	Mm/FE1
BDX94	S4a	P	BF512	S7/S5	Mm/FET	BF994S	s7	Mm/FET
BDX95	S4a	P	BF513	S7/S5	Mm/FET	BF996	S7/S5	Mm/FET
BDX96	S4a	P	BF536	s7	Mm	BF996S	s7	Mm/FET
BDY90	S4a	P	BF550;R	S7	Mm	BF997	s7	Mm/FET
BDY90A	S4a	P	BF569	S 7	Mm	BFG23	S10	WBT
BDY91	S4a	P	BF570	S 7	Mm	BFG32	S10	WBT
BDY92	S4a	P	BF579	S 7	Mm	BFG34	S10	WBT
BF198	\$3	Sm	BF620	s7	Mm	BFG51	S10	WBT
BF199	53	Sm	BF621	S 7	Mm	BFG65	S10	WBT

FET = Field-effect transistors

HVP = High-voltage power transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

WBT = Wideband hybrid IC transistors

type no.	book	section	type no.	book	section	type no.	book	section
BFG67	S7/S10	Mm	BFQ65	S10	WBT	BFT45	S 3	Sm
BFG9OA	S10	WBT	BFQ66	S10	WBT	BFT46	S7/S5	Mm/FET
BFG91A	510	WBT	BFQ67	S7/S10	Mm/WBT	BFT92	57/510	Mm/WBT
BFG92A	S10	WBT	BFQ68	S10	WBT	BFT93	S7/S10	Mm/WBT
BFG93A	S10	WBT	BFQ136	S10	WBT	BFW10	S5	FET
BFG96	S10	WBT	BFR29	S5	FET	BFW11	S5	FET
BFG195	S10	WBT	BFR30	S7/S5	Mm/FET	BFW12	S5	FET
BFP90A	S10	WBT	BFR31	S7/S5	Mm/FET	BFW13	S 5	FET
BFP91A	S10	WBT	BFR49	510	WBT	BFW16A	S10	WBT
BFP96	S10	WBT	BFR53	S7/S10	Mm/WBT	BFW17A	S10	WBT
BFQ10	S 5	FET	BFR54	s3	Sm	BFW30	S10	WBT
BFQ11	S5	FET	BFR64	S10	WBT	BFW61	S5	FET
BFQ12	S5	FET	BFR65	S10	WBT	BFW92	S10	WBT
BFQ13	S 5	FET	BFR84	S 5	FET	BFW92A	S10	WBT
BFQ14	S5	FET	BFR90	S10	WBT	BFW93	S10	WBT
BFQ15	S 5	FET	BFR90A	S10	WBT	BFX34	S 3	Sm
BFQ16	S5	FET	BFR91	S10	WBT	BFX89	S10	WBT
BFQ17	S7/S10	Mm/WBT	BFR91A	S10	WBT	BFY50	S 3	Sm
BFQ18A	S7/S10	Mm/WBT	BFR92	S7/S10	Mm/WBT	BFY51	s 3	Sm
BFQ19	S7/S10	Mm/WBT	BFR92A	S7/S10	Mm	BFY52	S 3	Sm
BFQ22S	S10	WBT	BFR93	S7/S10	Mm/WBT	BFY55	s 3	Sm
BFQ23	S10	WBT	BFR93A	S7/S10	Mm/WBT	BFY90	S10	WBT
BFQ23C	S10	WBT	BFR94	S10	WBT	BG2000	S1	RT
BFQ24	S10	WBT	BFR95	S10	WBT	BG2097	S1	RT
BFQ32	S10	WBT	BFR96	S10	WBT	BGD102	S10	WBM
BFQ32C	S10	WBT	BFR96S	S10	WBT	BGD102E	S10	WBM
BFQ32M	S10	WBT	BFR101A;	B S7/S5	Mm/FET	BGD104	S10	WBM
BFQ32S	S10	WBT	BFS17	S7/S10	Mm/WBT	BGD104E	S10	WBM
BFQ33	S10	WBT	BFS17A	S10	WBT	BGD502	510	WBM
BFQ33C	S10	WBT	BFS18;R	s7	Mm	BGD504	S10	WBM
BFQ34	S10	WBT	BFS19;R	s7	Mm	BGX885	s10	WBM
BFQ34T	S10	WBT	BFS20;R	S 7	Mm	BGY22	S6	RFP
BFQ42	S6	RFP	BFS21	S5	FET	BGY22A	S6	RFP
BFQ43	S6	RFP	BFS21A	S 5	FET	BGY23	S6	RFP
BFQ43S	56	RFP	BFS22A	56	RFP	BGY23A	56	RFP
BFQ51	S10	WBT	BFS23A	S 6	RFP	BGY32	s 6	RFP
BFQ51C	S10	WBT	BFT24	S10	WBT	BGY33	S6	RFP
BFQ52	S10	WBT	BFT25	S7/S10	Mm/WBT	BGY35	S6	RFP
BFQ53	S10	WBT	BFT25R	S7	Mm	BGY36	S6	RFP
BFQ63	S10	WBT	BFT44	S3	Sm	BGY40A	S6	RFP

^{* =} series

Sm = Small-signal transistors

ThM = Thyristor modules

WBM = Wideband hybrid IC modules

WBT = Wideband hybrid IC transistors

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

RFP = R.F. power transistors and modules

RT = Tripler

type no.	book	section	type no.	book	section	type no.	book	section
BGY40B	S6	RFP	BGY93 *	S6	RFP	BLV45/12	S 6	RFP
BGY41A	S6	RFP	BGY94 *	S6	RFP	BLV57	S6	RFP
BGY41B	56	RFP	BGY95A	S6	RFP	BLV59	56	RFP
BGY43	S6	RFP	BGY95B	S6	RFP	BLV75/12		RFP
BGY45A	S6	RFP	BGY96A	S6	RFP	BLV80/28		RFP
BGY45B	S6	RFP	BGY96B	s6	RFP	BLV90	s6	RFP
BGY46A	S6	RFP	BGY584A	S10	WBM	BLV9O/SL	S6	RFP
BGY46B	S6	RFP	BGY585A	S10	WBM	BLV91	S6	RFP
BGY47 *	S6	RFP	BGY586	S10	WBM	BLV91/SL	S6	RFP
BGY48 *	S6	RFP	BGY587	S10	WBM	BLV92	S6	RFP
BGY50	\$10	WBM	BLF146	s6	RFP/FET	BLV93	S6	RFP
BGY51	S10	WBM	BLF242	S6	RFP/FET	BLV94	S6	RFP
BGY52	S10	WBM	BLF244	S6	RFP/FET	BLV95	S6	RFP
BGY53	S10	WBM	BLF245	S6	RFP/FET	BLV97	S6	RFP
BGY54	S10	WBM	BLT90/SL	S6	RFP	BLV98	56	RFP
BGY55	S10	WBM	BLT91/SL		RFP	BLV99	S6	RFP
BGY56	S10	WBM	BLT92/SL		RFP	BLW29	S6	RFP
BGY57	S10	WBM	BLU20/12		RFP	BLW31	S6	RFP
BGY58	S10	WBM	BLU30/12		RFP	BLW32	S6	RFP
BGY58A	S10	WBM	BLU45/12	S6	RFP	BLW33	S6	RFP
BGY59	\$10	WBM	BLU50	S6	RFP	BLW34	S6	RFP
BGY60	S10	WBM	BLU51	S6	RFP	BLW50F	S6	RFP
BGY61	S10	WBM	BLU52	S6	RFP	BLW60	S6	RFP
BGY65	S10	WBM	BLU53	S6	RFP	BLW60C	S6	RFP
BGY67	S10	WBM	BLU60/12	S6	RFP	BLW76	S6	RFP
BGY67A	S10	WBM	BLU97	S6	RFP	BLW77	S6	RFP
BGY70	S10	WBM	BLU98	S6	RFP	BLW78	S6	RFP
BGY71	S10	WBM	BLU99	S 6	RFP	BLW79	S6	RFP
BGY74	S10	WBM	BLV10	S6	RFP	BLW80	S6	RFP
BGY75	S10	WBM	BLV11	S6	RFP	BLW81	S6	RFP
BGY78	S10	WBM	BLV20	S6	RFP	BLW83	S6	RFP
BGY84	S10	WBM	BLV21	S6	RFP	BLW84	S6	RFP
BGY84A	S10	WBM	BLV25	S6	RFP	BLW85	S6	RFP
BGY85	S10	WBM	BLV30	S6	RFP	BLW86	S6	RFP
BGY85A	510	WBM	BLV30/12	\$6	RFP	BLW87	S6	RFP
BGY86	S10	WBM	BLV31	S 6	RFP	BLW89	S6	RFP
BGY87	S10	WBM	BLV32F	S6	RFP	BLW90	S6	RFP
BGY88	S10	WBM	BLV33	s6	RFP	BLW91	\$6	RFP
BGY90A	S6	RFP	BLV33F	S6	RFP	BLW95	56	RFP
BGY90B	S6	RFP	BLV36	S6	RFP	BLW96	S6	RFP

^{* =} series

RFP = R.F. power transistors and modules WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	section
BLW97	S 6	RFP	BPW50	S8a/b	PDT	BSR20; A	97	Mm
BI.W98	S6	RFP	BPW71	58b	PDT	BSR30	. s7	Mm
BLW99	S6	RFP	BPX25	58b	PDT	BSR31	s7	Mm
BLX13	56	RFP	BPX29	58b	PDT	BSR32	S7	Mm
BLX13C	S6	RFP	BPX40	58b	PDT	BSR33	s7	Mm
BLX14	S6	RFP	BPX41	S8b	PDT	BSR40	s7	Mm
BLX15	S6	RFP	BPX42	S8b	PDT	BSR41	S7	Mm
BLX39	S6	RFP	BPX61	S8b	PDT	BSR42	š7	Mm
BLX65	S6	RFP	BPX61P	S8b	PDT	BSR43	s7	Mm
BLX65E	S6	RFP	BPX71	S8b	PDT	BSR50	S 3	Sm
BLX65ES	S6	RFP	BPX72	S8b	PDT	BSR51	s 3	Sm
BLX67	S6	RFP	BR100/03		Th	BSR52	S3	Sm
BLX68	S6	RFP	BR101	S3	Sm	BSR56	S7/S5	Mm/FE
BLX69A	S6	RFP	BR210*	S2a	Th	BSR57	S7/S5	Mm/FE
BLX91A	S 6	RFP	BR216*	S2a	Th	BSR58	S7/S5	Mm/FE
BLX91CB	S6	RFP	BR220*	S2a	Th	BSR60	S 3	Sm
BLX92A	56	RFP	BRY39	S3	Sm	BSR61	S 3	Sm
BLX93A	S6	RFP	BRY56	S 3	Sm	BSR62	S 3	Sm
BLX94A	S6	RFP	BRY61	\$7	Mm	BSS38	53	Sm
BLX94C	S6	RFP	BRY62	S7	Mm	BSS50	s3	Sm
BLX95	S 6	RFP	BS 107	S5	FET	BSS51	\$3	Sm
BLX96	S6	RFP	BS170	S5	FET	BSS52	S 3	Sm
BLX97	S6	RFP	BSD10	S5	FET	BSS60	S 3	Sm
BLX98	S6	RFP	BSD12	S5	FET	BSS61	S3	Sm
BLY87A	S6	RFP	BSD20	S5/7	FET	BSS62	S3	Sm
BLY87C	s6	RFP	BSD22	S5/7	FET	BSS63;R	S 7	Mm
BLY88A	S6	RFP	BSD212	S5	FET	BSS64;R	S7	Mm
BLY88C	S6	RFP	BSD213	S5	FET	BSS68	S3	Sm
BLY89A	S6	RFP	BSD214	S5	FET	BSS83	S5/7	FET/M
BLY89C	56	RFP	BSD215	S 5	FET	BST15	s7 ,	Mm
BLY90	S 6	RFP	BSR12;R	S7	Mm	BST16	s7	Mm
BLY91A	56	RFP	BSR13;R	S7	Mm	BST39	S7	Mm
BLY91C	S 6	RFP	BSR14;R	s7	Mm	BST40	s7	Mm
BLY92A	S6	RFP	BSR15;R	s7	Mm	BST50	S7	Mm
BLY92C	S6	RFP	BSR16;R	s7	Mm	BST51	s7	Mm
BLY93A	S6	RFP	BSR17;R	S 7	Mm	BST52	S 7	Mm
BLY93C	S6	RFP	BSR17A;R		Mm	BST60	S7	Mm
BLY94	S6	RFP	BSR18;R	S7	Mm	BST61	s7	Mm
BPF24	S8b	PDT	BSR18A;R		Mm	BST62	S7	Mm
BPW22A	S8a/b	PDT	BSR19; A		Mm	BST70A	S5	FET

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits
Sm = Small-signal transistors

PDT = Photodiodes or transistors

Th = Thyristors

RFP = R.F. power transistors and modules

type no.	book	section	type no.	book	section	type no.	book	section
BST72A	\$5	FET	BT138F*	S2b	Tri	BU505DF	S4b	SP
BST74A	\$5	FET	BT139*	S2b	Tri	BU506;D	S4b	SP
BST76A	\$5	FET	BT139F*	S2b	Tri	BU603	S4b	SP
BST78	S5	FET	BT145*	S2b	Tri	BU705	S4b	SP
BST80	\$5/\$7	FET/Mm	BT149*	S2b	Th	BU705F	S4b	SP
BST82	\$ 5/\$7	FET/Mm	BT150	S2b	Th	BU706; D	S4b	SP
BST84	S5/S7	FET/Mm	BT151*	S2b	Th	BU706F	S4b	SP
BST86	S5/S7	FET/Mm	BT151F*	S2b	Th	BU706DF	S4b	SP
BST90	\$5	FET	BT152*	S2b	Th	BU724;A	S4b	SP
BST97	S 5	FET	BT153	S2b	Th	BU808	S4b	SP
BST 100	S 5	FET	BT157*	S2b	Th	BU824	S4b	SP
BST110	S5	FET	BT169*	S2b	Th	BU826; A	S4b	SP
BST120	S5/S7	FET/Mm	BTA140*	S2b	Tri	BU903	S4b	SP
BST122	S5/S7	FET/Mm	BTR59*	S2b	Tri	BUP22*	S4b	SP
BSV15	\$3	Sm	BTS59*	S2b	Tri	BUP22BF	S4b	SP
BSV16	S 3	Sm	BTV58*	S2b	Th	BUP22CF	S4b	SP
BSV17	S 3	Sm	BTV59*	S2b	Th	BUP23*	S4b	SP
BSV52;R	S7	Mm	BTV59D*	S2b	Th	BUP23BF	S4b	SP
BSV64	S 3	Sm	BTV60*	S2b	Th	BUP23CF	S4b	SP
BSV78	\$5	FET	BTV60D*	S2b	Th	BUS11; A	S4b	SP
BSV79	S 5	FET	BTV70*	S2b	Th	BUS12;A	S4b	SP
BSV80	S5	FET	BTV70D*	S2b	Th	BUS13;A	S4b	SP
BSV81	S 5	FET	BTW23*	S2b	Th	BUS14;A	S4b	SP
BSW66A	S3	Sm	BTW38*	S2b	Th	BUS21*	S4b	SP
BSW67A	S3	Sm	BTW40*	S2b	Th	BUS22*	S4b	SP
BSW68A	S 3	Sm	BTW42*	S2b	Th	BUS23*	S4b	SP
BSX19	\$3	Sm	BTW43*	S2b	Tri	BUS24*	S4b	SP
BSX20	S 3	Sm	BTW45*	S2b	Th	BUS131*	S4b	SP
BSX32	\$3	Sm	BTW58*	S2b	Th	BUS132*	S4b	SP
BSX45	S3	Sm	BTW62*	S2b	Th	BUS133*	S4b	SP
BSX46	S 3	Sm	BTW62D*	S2b	Th	BUT11; A	S4b	SP
BSX47	S 3	Sm	BTW63*	S2b	Th	BUT11F	S4b	SP
BSX59	S 3	Sm	BTY79*	S2b	Th	BUT11AF	S4b	SP
BSX60	S 3	Sm	BTY91*	S2b	Th	BUT12; A	S4b	SP
BSX61	S 3	Sm	BU306F	S4b	SP	BUT18;A	S4b	SP
BT136*	S2b	Tri	BU307F	S4b	SP	BUT18F	S4b	SP
BT136F*	S2b	Tri	BU406F	S4b	SP	BUT18AF	54b	SP
BT137*	S2b	Tri	BU407F	S4b	SP	BUT21B	S4b	SP
BT137F*	S2b	Tri	BU505;D	S4b	SP	BUT21C	S4b	SP
BT138*	S2b	Tri	BU505F	S4b	SP	BUT21BF	S4b	SP

Sm = Small-signal transistors

Th = Thyristors

Tri = Triacs

^{* =} series

PM = Power MOS transistors

SP = Low-frequency switching power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BUT21CF	S4b	SP	BUX85AF	S4b	SP	BUZ72A	59	PM
BUT22B	S4b	SP	BUX86	S4b	SP	BUZ73	59	PM
BUT22C	S4b	SP	BUX87	S4b	SP	BUZ73A	S 9	PM
BUV26:A	S4b	SP	BUX88	S4b	SP	BUZ74	59	PM
BUV26F	54b	SP	BUX98	S4b	SP	BUZ74A	59	PM
BUV26BF	S4b	SP	BUX98A	S4b	SP	BUZ76	s9	PM
BUV27;A	S4b	SP	BUX99	S4b	SP	BUZ76A	59	PM
BUV27F	S4b	SP	BUY89	S4b	SP	BUZ78	S9	PM
BUV27AF	S4b	SP	BUZ 10	59	PM	BUZ8O	59	PM
BUV28;A	S4b	SP	BUZ 11	S9	PM	BUZ8OA	S9	PM
BUV28F	S4b	SP	BUZ 11A	59	PM	BUZ83	59	PM
BUV28AF	S4b	SP	BUZ14	S9	PM	BUZ83A	S 9	PM
BUV82	S4b	SP	BUZ 15	59	PM	BUZ84	59	PM
BUV83	S4b	SP	BUZ20	59	PM	BUZ84A	59	PM
BUV89	S4b	SP	BUZ21	59	PM	BUZ90	S9	PM
BUV90	S4b	SP	BUZ23	S9	PM ·	BUZ 9OA	S9	PM .
BUV98;A	S4b	SP	BUZ24	S9	PM	BUZ94	59	PM
BUV298(V)S4b	SP	BUZ25	59	PM	BUZ211	S9	PM
BUW11; A	S4b	SP	BUZ31	59	PM	BUZ 307	59	PM
BUW11F	S4b	SP	BUZ32	S 9	PM	BUZ 308	s9	PM
BUW11AF	S4b	SP	BUZ34	S9	PM	BUZ310	S9	PM
BUW12;A	S4b	SP	BUZ35	S9	PM	BUZ311	S9	PM
BUW12F	S4b	SP	BUZ36	59	PM	BUZ 326	S9	PM
BUW12AF	S4b	SP	BUZ41A	59	PM	BUZ330	S 9	PM
BUW13;A	S4b	SP	BUZ42	S 9	PM	BUZ331	S 9	PM
BUW13F	S4b	SP	BU245	S9	PM .	BUZ347	S9	PM
BUW13AF	S4b	SP	BUZ45A	S9	PM	BUZ348	S9	PM
BUW84	S4b	SP	BUZ45B	59	PM	BUZ 349	S9	PM
BUW85	S4b	SP	BUZ5OA	59	PM	BUZ350	59	PM
BUW86	S4b	SP	BUZ50B	S9	PM	BUZ 351	S9	PM
BUW87	S4b	SP	BUZ5OC	S9	PM	BUZ355	S 9	PM
BUW87A	S4b	SP	BUZ53A	S9	PM	BUZ356	59	PM
BUW132*	S4b	SP	BUZ54	59	PM	BUZ357	59	PM
BUW133*	S4b	SP	BUZ54A	S9	PM	BUZ358	S9	PM
BUX46;A	S4b	SP	BUZ60	S 9	PM	BUZ 384	S 9	PM
BUX47;A	S4b	SP	BUZ63	S9	PM	BUZ385	S9	PM
BUX48;A	S4b	SP	BUZ64	59	PM	BY224*	S2a	R
BUX84	S4b	SP	BUZ71	59	PM	BY225*	S2a	R
BUX85	S4b	SP	BUZ71A	S9	PM	BY228	S1	R
BUX84F	S4b	SP	BUZ72	S9	PM	BY229*	S2a	R

^{* =} series

R = Rectifier diodes

PM = Power MOS transistors

type no.	book	section	type no.	book	section	type no.	book	section
BY229F*	S2a	R	BYP22*	S2a	R	BYV95B	S1	R
BY249*	S2a	R	BYP59*	S2a	R	BYV95C	S1	R
BY260*	S2a	R	BYQ28*	S2a	R	BYV96D	S1	R
BY261*	S2a	R	BYR29*	S2a	R	BYV96E	S1	R
BY329*	S2a	R	BYR29F*	S2a	R	BYW25*	S2a	R
BY359*	S2a	R	BYT28*	S2a	R	BYW29*	S2a	R
BY438	S1	R	BYT79*	S2a	R	BYW29F*	S2a	R
BY448	S1	R	BYV10	S1	R	BYW30*	S2a	R
BY458	S1	R	BYV18*	S2a	R	BYW31*	S2a	R
BY505	S 1	R	BYV19*	S2a	R	BYW54	S1	R
BY509	S 1	R	BYV20*	S2a	R	BYW55	s1	R
BY527	S1	R	BYV21*	S2a	R	BYW56	S1	R
BY584	S1	R	BYV22*	S2a	R	BYW92*	S2a	R
BY588	S1	R	BYV23*	S2a	R	BYW93*	S2a	R
BY609	S1	R	BYV24*	S2a	R	BYW95A	S1	R
BY610	S1	R	BYV26 *	S1/S2a	R	BYW95B	S1	R
BY614	S1	R	BYV27*	S1/S2a	R	BYW95C	S1	R
BY619	S1	R	BYV28*	S1/S2a		BYW96D	S1	R
BY620	S1	R	BYV29*	S2a	R	BYW96E	S1	R
BY627	S1	\mathbf{R}	BYV29F*	S2a	R	BYX10G	S1	R
BY707	S 1	R	BYV30*	S2a	R	BYX25*	S2a	R
BY708	S1	R	BYV31*	S2a	R	BYX30*	S2a	R
BY709	S1	R	BYV32*	S2a	R	BYX32*	S2a	R
BY710	S1	R	BYV32F*	S2a	R	BYX38*	S2a	R
BY711	S 1	R	BYV33*	S2a	R	BYX39*	S2a	R
BY712	S1	R	BYV33F*	S2a	R	BYX42*	S2a	R
BY713	S1	R	BYV34*	S2a	R	BYX46*	S2a	R
BY714	S1	R	BYV36 *	S1	R	BYX50*	S2a	R
BYD13 *	S1	R	BYV39*	S2a	R	BYX52*	S2a	R
BYD14 *	S1	R	BYV42*	S2a	R	BYX56*	S2a	R
BYD17 *	S1/7	R	BYV43*	S2a	R	BYX90G	S1	R
BYD33 *	S1	R	BYV43F*	S2a	R	BYX96*	S2a	R
BYD37 *	S1/7	R	BYV44*	S2a	R	BYX97*	S2a	R
BYD73 *	S1, .	R	BYV60*	S2a	R	BYX98*	S2a	R
BYD74 *	S1	R	BYV72*	S2a	R	BYX99*	S2a	R
BYD77 *	S1	R	BYV73*	S2a	R	BZD23	S1	Vrg
BYM26 *	S1	R	BYV74*	S2a	R	BZD27	s1/7	Vrg
BYM36 *	S1	R	BYV79*	S2a	R	BZT03	S1//	Vrg
BYM56 *	S1	R	BYV92*	S2a	R	BZV10	S1	Vrf
BYP21*	S2a	R	BYV95A	S1	R	BZV11	S1	Vrf
	524	•	D14./38	Q. 1.		1 23411	5 1	V 1. 1.

* = series

D = Displays

LED = Light-emitting diodes

M = Microwave transistors

Mm = Microminiature semiconductors

Ph = Photoconductive devices

PhC = Photocouplers

R = Rectifier diodes

TS = Transient suppressor diodes

Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

type no.	book	section	type no.	book	section	type no. book	section
							
BZV12	S1	Vrf	CNX46	S8b	PhC	CQT60 58a	LED
BZV13	S1	Vrf	CNX48	S8b	PhC	CQT70 S8a	LED
BZV14	S1	Vrf	CNX48U	S8b	PhC	CQT8OL S8a	LED
BZV37	S1	Vrf	CNX62	S8b	PhC	CQV70(L) S8a	LED
BZV46	S1	Vrg	CNX72	S8b	PhC	CQV7OA(L)S8a	LED
BZV49*	S1/S7	Vrg/Mm	CNX82	S8b	PhC	CQV70U(L)S8a	LED
BZV55*	S7	Mm	CNX83	58b	PhC	COV71A(L)S8a	LED
BZV80	S1	Vrf	CNX91	S8b	PhC	CQV72(L) S8a	LED
BZV81	S1	Vrf	CNX92	S8b	PhC	CQV8OL S8a	LED
BZV85 *	S1	Vrg	CNY17-1	S8b	PhC	CQV8OAL S8a	LED
BZWO3 *	S1	Vrg	CNY17-2	S8b	PhC	CQV8OUL S8a	LED
BZW14	S1	Vrg	CNY17-3	S8b	PhC	CQV800L S8a	LED
BZW86*	S2a	TS	CNY50	58b	PhC	CQV81L S8a	LED
BZX55 *	52a S1	Vrq	CNY57	S8b	PhC	COW10A(L)S8a	LED
BZX70*	S2a	Vrq	CNY57A	58b	PhC	CQW10B(L)S8a	LED
Dakio	J2d	A T./d	CHIJIA	300	riiC.	COM TOB(T) 200	TIED
BZX75 *	S1	Vrg	CNY57AU	S8b	PhC	CQW1OU(L)58a	LED
B2X79*	S1	Vrg	CNY57U	S8b	PhC	CQW11B(L)S8a	LED
BZX84*	S7/S1	Mm/Vrg	CNY62	S8b	PhC	CQW12B(L)S8a	LED
BZY91*	S2a	Vrg	CNY63	S8b	PhC	CQW2OA S8a	LED
BZY93*	S2a	Vrg	CQF24	S8b	Ph	CQW21 S8a	LED
CFX13	S11	M	COL10A	S8b	Ph	COW22 58a	LED
CFX21	S11	М	CQL13A	S8b	Ph	CQW24(L) S8a	LED
CFX30	S11	М	CQL16	S8b	Ph	CQW54 S8a	LED
CFX31	S11	M	COS51L	S8a	LED	CQW60(L) S8a	LED
CFX32	S11	M	CQS54	S8a	LED	CQW6OA(L)S8a	LED
·			~				
CFX33	S11	M	CQS82L	S8a	LED	CQW6OU(L)S8a	LED
CNG35	S8b	PhC	CQS82AL	S8a	LED	CQW61(L) S8a	LED
CNG36	S8b	PhC	CQS84L	S8a	LED	CQW62(L) 58a	LED
CNR36	58b	PhC	CQS86L	S8a	LED	CQW89A S8a/b	Ι
CNX21	S8b	PhC	CQS93	S8a	LED	CQW93 \$8a	LED
CNX35	S8b	PhC	CQS93E	S8a	LED	CQW95 \$8a	LED
CNX35U	S8b	PhC	CQS93L	S8a	LED	CQW97 S8a	LED
CNX36	S8b	PhC	CQS95	S8a	LED	CQX24(L) 58a	LED
CNX36U	S8b	PhC	CQS95E	S8a	LED	CQX51(L) S8a	LED
CNX38	S8b	PhC	CQS95L	S8a	LED	CQX54(L) S8a	LED
CNX38U	S8b	PhC	CQS97	S8a	LED	CQX54D S8a	LED
CNX39	S8b	PhC	CQS97E	S8a	LED	CQX64(L) S8a	LED
CNX39U	S8b	PhC	CQS97L	S8a	LED	CQX64D S8a	LED
CNX44	S8b	PhC	CQT10B	S8a	LED	CQX74(L) S8a	LED
CNX44A	S8b	PhC	CQT24	S8a	LED	CQX74D S8a	LED

^{* =} series

FET = Field-effect transistors

LED = Light-emitting diodes

M = Microwave transistors

P = Low-frequency power transistors

St = Rectified stacks

WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	sectio
CQY11B	S8b	LED	KP101A	S13	SEN	LTE42005S	S11	М
COY11C	S8b	LED	KPZ2OG	S13	SEN	LTE42008R	S11	M
CQY24B(L		LED	KPZ21G	S13	SEN	LTE42012R	S11	M
CQY49B	,58b	LED	KPZ21GE	S13	SEN	LV1721E50R		M
CQY49C	58b	LED	KRX10	S13	SEN	LV2024E45R		M
CQITIC	300	neo	RIATO	513	DEW	BV2024E43K	יונ	1-1
CQY50	S8b	LED	KRX11	S13	SEN	LV2327E40R	S11	M
CQY52	S8b	LED	KTY81*	S1 3	SEN	LV3742E16R	S11	M
CQY53S	S8b	LED	KTY83*	S13	SEN	LV3742E24R	S11	M
CQY54A	S8a	LED	KTY84*	S13	SEN	LWE2015R	S11	M
CQY58A	S8a/b	I	KTY85*	S13	SEN	LWE2025R	S11	M
CQY89A	S8a/b	I	KTY86	S13	SEN	LZ1418E100	DC11	М
~			KTY87	\$13				
CQY94B(L	58a	LED	1	S13	SEN	MCA230	S8b	PhC
CQY95B		LED	LAE2001R		M	MCA231	S8b	Pho
CQY96(L)	S8a	LED	LAE4000Q	S11	M	MCA255	S8b	PhC
CQY97A	- 58a	LED	LAE4001R	S11	M	MCT2	S8b	PhC
ESM3045A	S4b	SP	LAE4002S	S11	M	MCT26	S8b	PhO
ESM3045D	S4b	SP	LAE6000Q	S11	M	MJE13004	S4b	SP
ESM4045A	S4b	SP	LBE1004R	S11	M	MJE13005	S4B	SP
ESM4045D	S4b	SP	LBE1010R	S11	M	MJE13006	S4b	SP
ESM5045D	S4b	SP	LBE2003S	S11	М	MJE13007	S4B	SP
ESM6045A	S4b	SP	LBE2005Q	S11	М	MJE13008	S4b	SP
ESM6045D	54b	SP	LBE2003Q	S11	M	MJE13009	S4B	SP
Fresnel-	S13	A	LBE20095	S11	M	MKB12040WS	S11	M
lens	31.5	n.	LCE 10 10R	511	M	MKB12100WS		M
H11A1	S8b	PhC	1			MKB12140W	S11	M
пин	ວດກ	PIIC	LCE2003S	S11	М	MKB12140W	511	1*1
H11A2	S8b	PhC	LCE2005Q	S11	M	M06075B2002	ZS11	M
H11A3	S8b	PhC	LCE2008T	S11	M	M06075B4003	2511	M
H11A4	S8b	PhC	LCE2009S	S11	М	MPS6513	S3	Sm
H11A5	S8b	PhC	LJE42002T	S11	M	MPS6514	\$3	Sm
H11B1	S8b	PhC	LKE1004R	S11	M	MPS6515	s3	Sm
H11B2	S8b	PhC	LKE2002T	S11	М	MPS6517	S 3	Sm
H11B3	58b	PhC	LKE2002T	\$11	M	MPS6518	\$3	Sm
H11B255	S8b	PhC	LKE20041	S11	M	MPS6519	\$3	Sm
KGZ 10	S13	SEN	LKE21004R	S11		MPS6520	53	Sm
KGZ 10	S13				M)		
10420/21	513	SEN	LKE21015T	S11	M	MPS6521	S3	Sm
KMZ 10A	S13	SEN	LKE21050T	S11	М	MPS6522	s 3	Sm
KMZ 10B	S13	SEN	LKE27010R	S11	M	MPS6523	S3	Sm
KMZ 10C	S13	SEN	LKE27025R	S11	М	MPSA05	\$3	Sm
KP100A	S13	SEN	LKE32002T	S11	M	MPSA06	S3	Sm
KP100A1	\$13	SEN	LKE32004T	S11	М	MPSA13	\$3	Sm

^{* =} series

I = Infrared devices

M = Microwave transistors

P = Low-frequency power transistors

Ph = Photoconductive diodes

R = Rectifier diodes

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

Vrf = Voltage reference diodes

type no.	book	section	type no.	book	section	type no.	book	section
MPSA14	. S3	Sm	OM961	S4a	P	PKB12005U	S11	M
MPSA42	s S3	Sm	OSB9115	52a	St	PKB20010U	S11	M
MPSA43	s3	Sm	OSB9215	S2a	St	PKB23001U	S11	M
MPSA55	S3	Sm	OSB9415	S2a	St	PKB23003U	S11	M
MPSA56	53 53	Sm	OSM9115	S2a	St	PKB23005U	S11	M
PE SAJO		Jiii	03/19113	SZA	31.	I NDZ 30030	5711	11
MPSA63	S 3	Sm	OSM9215	S2a	St	PKB25006T	S11	M
MPSA64	S 3	Sm	OSM9415	S2a	St	PKB32001U	S11	M
MPSA92	S 3	Sm	OSM9510	S2a	St	PKB32003U	S11	M
MPSA93	S3	Sm	OSM9511	S2a	St	PKB32005U	S11	M
MRB12175Y	'R S11	М	OSM9512	S2a	St	PMBF4391	s7	Mm
MRB12350Y	'R S11	М	0\$\$9115	S2a	St	PMBF4392	s7	Mm
MS1011B70		M	oss9215	S2a	St	PMBF4393	S 7	Mm
MS6075B80		М	0559415	S2a	St	PMBT2222/	S7	Mm
MSB12900Y		M	P2105	S13	I	PMBT2907/		Mm
MZO912B75		М	PBMF4391	\$5	FET	PMBT3903/4		Mm
11103 (2013	1 1711		1 111 4351	55	. 1 1.1	1775733037	. 57	1.7311
MZO912B15	OYS11	M	PBMF4392	S5	FET	PMBT3906	s7	Mm
OM286; M	S13	SEN	PBMF4393	S5	FET	PMBT6428/9	S7 .	Mm
OM287; M	S13	SEN	PDE 100 1U	S11.	M	PMBTA05/06	s 7	Mm
OM320	S10	WBM	PDE1003U	S11	M	PMBTA13/14	S7	Mm
OM321	s10	WBM	PDE 1005U	S11	M	PMBTA42/43	57	Mm
OM322	S10	WBM	PDE1010U	S11	М	PMBTA55/56	. c7	Mm
OM323	510	WBM	PEE 100 1U	S11	M	PMBTA63/64		Mm
OM323A	S10	WBM.	PEE 100 10	S11	M	PMBTA92/93		Mm
OM325A OM335	S 10	WBM	PEE 1005U	S11	M	PMLL4148	S1	SD
OM336	S10	WBM	PEE 10030	S11	M	PMLL4150	S1	SD
OPSSO	310	WDP	PERIOTOU	511	171	FMILIATO	31	עה
OM337	S10	WBM	PH2222	\$3	Sm	PMLL4151	S1	SD
OM337A	S10	WBM	PH2222A	S3	Sm	PMLL4153	S1	SD
OM339	S10	WBM	PH2369	S3	Sm	PMLL4446	S1	SD
OM345	S10	WBM	PH2907	\$3	Sm	PMLL4448	S1	SD
OM350	S 10	WBM	PH2907A	\$3	Sm	PMLL5225B		
OM360	S10	WBM	PH2955T	S4a	p	to	S1/S7	SD
OM361	510	WBM	PH3055T	S4a	P	PMLL5267B		
OM370	S10	WBM	PH5415	53	Sm	PN2222	s3	Sm
OM386B	s13	SEN	PH5416	s3	Sm	PN2222A	\$3	Sm
OM386M	S13	SEN	РН13002	S4b	SP	PN2369	\$3	Sm
OM387B;M	S13	SEN	DU 12002	S4b	SP	PN2369A	S 3	C _m
OM388B	\$13 \$13	SEN SEN	PH13003	54b 52a	R R	PN2369A PN2907	53 S3	Sm Sm
омзаов омзаяв	S13		PHSD51			PN2907A	\$3 \$3	Sm Sm
		SEN	PKB3001U	S11	M			
OM390;391 OM931		SEN	PKB3003U	S11	M M	PN3439	S3 S3	Sm
OM331	S4a	SEN	PKB3005U	S11	[P]	PN3440	5.5	Sm

A = Accessories

FET = Field-effect transistors

I = Infrared devices

Ph = Photoconductive devices

R = Rectified diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

Sm = Small-signal transistors

Vrf = Voltage reference diodes

WBT = Wideband transistors

type no. bo	ook	section	type no.	book	section	type no.	book	sectio
PN5415	S 3	Sm	RXB12350	Y S11	M	TIP120	S4a	p
PN5416	S3	Sm	RZ1214B3	5Y S11	M	TIP121	S4a	P
PO44	S8b	PhC	RZ1214B6		М	TIP122	S4a	P
PO44A	S8b	PhC	RZ 12 14B6		М	TIP125	54a	P
PPC5001T	S11	M	RZ1214B1		M	TIP126	S4a	p
PQC5001T	s11	M	R%1214B1	25YS11	М	TIP127	54a	P
PTB23001X	S11	M	RZ1214B1	50YS11	M	TIP130	S4a	P
PTB23003X	S11	M	RZ2833B4	5W S11	M	TIP131	S4a	P
PTB23005X	S11	M	R23135B1	5U S11	M	TIP132	S4a	P
PTB32001X	S11	M *	RZ3135B1	5W S11	M	TIP135	S4a	P
PTB32003X	S11	M	RZ3135B2	5U S11	M	TIP136	S4a	P
PTB32005X	S11	M	R23135B3	OW 511	М	TIP137	54a	P
PTB42001X	S11	M	RZB12100	Y S11	M	TIP140	S4a	P
PTB42002X	S11	M	RZB12250		M	TIP141	S4a	P
PTB42003X	S11	M	RZZ1214B		M	TIP145	S4a	P
PV3742B4X	S11	M	SL5500	S8b	PhC	TIP146	S4a	P
PVB42004X	S11	M	SL5501	S8b	PhC	TIP147	S4a	P
PXT3904	s7	Mm	SL5502R	S8b	PhC	TIP2955	S4a	P
PXT3906	s7	Mm	SI,5504	S8b	PhC	TIP3055	S4a	p
PZ1418B15U	S11	M	SL5504S	S8b	PhC	1N821;A	S 1	Vrf
PZ 14 18 B 3 O U	S11	M	SL5505S	S8b	PhC	1N823; A	S1	Vrf
PZ1721B12U	S11	M	SL5511	S8b	PhC	1N825;A	S1	Vrf
PZ 172 1B25U	S11	M	TTP29*	S4a	P	1N827;A	S1	Vrf
PZ2024B10U	511	M	TIP30*	S4a	P	1N829;A	S1	Vrf
P7.2024B20U	S11	M	TIP31*	S4a	P	1N914	S1	SD
PZB16035U	S11	M	TIP32*	S4a	P	1N916	S1	SD
PZB27020U	S11	M	TIP33*	S4a	P	1N3879	S2a	R
RPW100	S13	1	TIP34*	S4a	P	1N3880	S2a	R
RPW101	S13	I	TIP41*	S4a	P	1N3881	S2a	R
RPW102	S13	I	TIP42*	5 4 a	P	1N3882	S2a	R
RPY97	S13	I	TIP47	S4b	P	1N3883	S2a	R
RPY 100	S13	I	TIP48	S4b	P	1N3889	S2a	R
			TIP49	S4b	P	1N3890	S2a	R
RPY102	S13	I	TIP50	5 4 b	P	1N3891	S2a	R
			TIP110	S4a	P	1N3892	S2a	R
RPY 107	S13	r	TIP111	S4a	P	1N3893	S2a	R
RPY109	S13	Ĩ	TIP112	S4a	P	1N3909	S2a	R
RPY222	S13	Ĩ	TIP115	S4a	P	1N3910	S2a	R
RV3135B5X	511	M	TIP116	S4a	P	1N3911	S2a	R
RX1214B3005		M	TIP117	S4a	P	1N3912	S2a	R

A = Accessories

FET = Field-effect transistors

= Infrared devices

Ph = Photoconductive devices

R = Rectified diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

Sm = Small-signal transistors

Vrf = Voltage reference diodes

WBT = Wideband transistors

type no.	book	section	type no.	book	section	type no.	book	section
1N3913	S2a	R	2N2906A	s3	Sm	2N4857	. S5	FET
1N4001G	S1	R	2N2907	S3	Sm	2N4858	\$5	
1N4002G	S1	R	2N2907A	53	Sm	2N4859	\$5	FET
1N4003G	. S1	R	2N3019	S3	Sm	2N4860	S5	FET
1N4004G	S1	R	2N3020	\$3	Sm	2N4861	S5	FET
1 N4 005G	S1	R	2N3O53	53	Sm	2N5086	\$ 3	Sm
1N4006G	S1	R	2N3375	S6	RFP	2N5087	S3	Sm
1N4007G	S1	R	2N3553	56	RFP	2N5088	53	Sm
1N4148	S1	SD	2N3632	56	RFP	2N5089	S3 '	Sm
1N4150	S1	SD	2N3822	S5	FET	• 2N5400	\$3	Sm
1N4151	S1	SD	2N3823	S 5	FET	2N5401	S3	Sm
1N4153	S1	SD	2N3866	S6	RFP	2N5415	S3	Sm
1N4446	S1	SD	2N39O3	S 3	Sm	2N5416	S3	Sm
1N4448	S1	SD	2N39O4	53	Sm	2N5550	\$3	Sm
1N4531	S1	SD	2N3905	S 3	Sm	2N5551	S3	Sm
1N4532	S1	SD	2N3906	53	Sm	2N6659	S 5	FET
1N5059	S1	R	2N3924	S 6	RFP	2N6660	\$5	FET
1N5060	S1	R	2N3926	S 6	RFP	2N6661	\$5	FET
1N5061	S1	R	2N3927	S6	RFP	4N25	S8b	PhC
1N5062	S1	R	2N3966	\$5	FET	4N25A	S8b	PhC
2N918	S10	WBT	2N4030	S 3	Sm	4N26	S8b	PhC
2N930	S 3	Sm	2N4O31		Sm	4N27	S8b	PhC
2N1613	s3	Sm	2N4O32	S 3	Sm	4N28	S8b	PhC
2N1711	S 3	Sm	2N4O33	S 3	Sm	4N35	S8b	PhC
2N1893	S 3	Sm	2N4O91	S5	FET	4N36	58b	PhC
2N2219	s3	Sm	2N4092	S 5	FET	4N37	S8b	PhC
2N2219A	s3	Sm	2N4093	S5	FET	4N38	S8b	PhC
2N2222	S 3	Sm	2N4123	S3	Sm	4N38A	S8b	PhC
2N2222A	S 3	Sm	2N4124	S 3	Sm	502CQF	S8b	Ph
2N2297	S 3	Sm	2N4125	\$3	Sm	503CQF	S8b	Ph
2N2368	S 3	Sm	2N4126	\$3	Sm	504CQL	S8b	Ph
2N2369	S 3	Sm	2N4391	S5	FET	516CQF-B	S8b	Ph
2N2369A	\$ 3	Sm	2N4392	S5	FET	56201d	S4b	A
2N2483	S 3	Sm	2N4393	S5	FET	56201j	S4b	A
2N2484	S3	Sm	2N4400	53	Sm	56245	S3,10	A
2N29O4	53	Sm	2N4401	s 3	Sm	56246	s3,10	A
2N2904A	S 3	Sm	2N4402	S3	Sm	56261a	54b	A
2N2905	S 3	Sm	2N44O3	s3	Sm	56264	S2a/b	Α
2N2905A	S 3	Sm	2N4427	S6	RFP	56295	S2a/h	A
2N2906	53	Sm	2N4856	\$5	FET	56326	S4b	Α

A = Accessories

FET = Field-effect transistors

= Infrared devices

Ph = Photoconductive devices

R = Rectified diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

Sm = Small-signal transistors

Vrf = Voltage reference diodes

WBT = Wideband transistors

type no.	book	section
56339	S4b	A
56352	S4b	
56353	S4b	
56354		
56359b	S2,4	
56359c	52,4	b A
56359d	S2,4	b A
56360a	52,4	b A
56363	S2,4	b A
56364	52,4	b A
56367	S2a/	b A
56368b	52,4	b A
56368c	S2,4	b A
56369	S2,4	b A
56378	S2,4	b A
56379	52,4	b A
56387a,k	S4b	A
56397	S8b	A
		_

A = Accessories

DATA HANDBOOK SYSTEM

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 70 books with specifications on electronic components, subassemblies and materials. It is made up of six series of handbooks:

PROFESSIONAL COMPONENTS*

DISCRETE SEMICONDUCTORS

INTEGRATED CIRCUITS

PASSIVE COMPONENTS**

MATERIALS**

DISPLAY COMPONENTS

The contents of each series are listed on pages iii to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

^{*} Will replace the Electron tubes (blue) series of handbooks.

^{**} Will replace the Components and materials (green) series of handbooks.

PROFESSIONAL COMPONENTS

This series of data handbooks comprises:

T1	Power tubes for RF heating and communications					
T2a	Transmitting tubes for communications, glass types					
T2b	Transmitting tubes for communications, ceramic types					
T3	Klystrons					
T4	Magnetrons for microwave heating					
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications					
T6	Geiger-Müller tubes					
T8*	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units					
T9	Photo and electron multipliers					
T10	Plumbicon camera tubes and accessories					
T11	Microwave semiconductors and components					
T12	Vidicon and Newvicon camera tubes					
T13	Image intensifiers and infrared detectors					
T15	Dry reed switched					
T16**	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units					

^{*} Handbook T8 will be issued in a new series of handbooks (Display Components) and will have the new handbook code DC01.

^{**} Handbook T16 will be re-issued in the future in the new series of handbooks (Display Components).

DISCRETE SEMICONDUCTORS

This series of data handbooks comprises:

S1	$\label{eq:continuous} \textbf{Diodes} \\ \textbf{Small-signal silicon diodes, voltage regulator diodes ($<$ 1.5$ W), voltage reference diodes, tuner diodes, rectifier diodes} \\$
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Small-signal field-effect transistors
S6	RF power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optoelectronics, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	PowerMos transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S13	Semiconductor sensors
S14	Liquid Crystal Displays

INTEGRATED CIRCUITS

This series of handbooks comprises:

IC01 Radio, audio and associated systems

Bipolar, MOS

IC02a/b Video and associated systems

Bipolar, MOS

IC03 ICs for Telecom

Bipolar, MOS

Subscriber sets, Cordless Telephones

IC04 HE4000B logic family

CMOS

IC05N HE4000B logic family — uncased ICs

CMOS

IC06 High-speed CMOS; PC74HC/HCT/HCU

Logic family

IC08 ECL 10K and 100K logic families

ICO9N TTL logic series

IC10 Memories

MOS, TTL, ECL

IC11 Linear Products
Supplement Linear Products

Supplement to IC11

IC12 I²C-bus compatible ICs

IC13 Semi-custom

Programmable Logic Devices (PLD)

IC14 Microcontrollers and peripherals

Bipolar, MOS

IC15 FAST TTL logic series

IC16 CMOS integrated circuits for clocks and watches

IC17 ICs for Telecom

Bipolar, MOS Radio pagers Mobile telephones

ISDN

IC18 Microprocessors and peripherals

IC19 Data communication products

PASSIVE COMPONENTS

This series of handbooks comprises:

curren code	t	new handbook code
C2	Television tuners, coaxial aerial input assemblies	DC01*
C3	Loudspeakers	DC04*
C4 C5	Ferroxcube potcores, square cores and cross cores Ferroxcube for power, audio/video and accelerators	MA01**
C7	Variable capacitors	PA04 [△]
C8	Variable mains transformers	PC10 ^{△△}
C9	Piezoelectric quartz devices	PA07 [△]
C11	Varistors, thermistors and sensors	PA02 [△]
C12	Potentiometers, encoders and switches	PA03 [△]
C13	Fixed resistors	PA08 △
C14	Electrolytic capacitors; solid and non-solid	PA01
C15	Ceramic capacitors	$PA06^{\triangle}$
C16	Permanent magnet materials	MA02**
C19	Piezoelectric ceramics	MA03**
C20	Wire-wound components for TVs and monitors	DC05*
C22	Film capacitors	PA05 [△]

- * These handbooks will be re-issued in the future in the new series of handbooks (Display Components).
- ** These handbooks will be re-issued in the future in the new series of handbooks (Materials).
- $^{\triangle}$ These handbooks will be re-issued in the future in the new series of handbooks (Passive Components).
- $^{\triangle\!\Delta}$ These handbooks will be re-issued in the future in the new series of handbooks (Professional Components).

MATERIALS

This series of handbooks comprises:

MA01* Ferrites (the current issue are handbooks C4 and C5)

MA02* Permanent magnet materials

MA03* Piezoelectric ceramics

^{*} Not yet issued in the Materials series of handbooks.

DISPLAY COMPONENTS

This series of handbooks comprises:

DC01 Colour display systems

DC02* Monochrome tubes and deflection units

DC03* Television tuners, coaxial aerial input assemblies

DC04* Loudspeakers

DC05* Wire-wound components for TVs and monitors

^{*} Not yet issued in the Display Components series of handbooks.

Applications produce and a construction of the	

Philips Components – a worldwide Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747.

Australia: PHILIPS INDUSTRIES LTD., Components Division, 11 Waltham Street, ARTARMON, N.S.W. 2064

Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN, Tel. (0222) 60 101-820.

Belgium: N.V. PHILIPS PROF. SYSTEMS - Elcoma Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 52 56 111.

Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600. CONSTANTA-IBRAPE; (Passive Devices & Materials): Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, Tel (011) 459-8211

Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760 SANTIAGO, Tel. (02) 77 38 16.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33. Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-02631

ESPOO HELSINKI 10, Tel. 09 +358-0-50261.

France: RTC-COMPELEC, 117 Quai du Président Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (01) 40938000.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296. Greece: PHILIPS HELLENIOUE S.A., Elcoma Division, No. 15,

25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894911.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd.,

BOMBAY – 400 025, Tel. (022) 49 30 311/49 30 590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 51 7995. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Components

Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.

Italy: PHILIPS S.p.A., Div. Componenti, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33

Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611

(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD.,

Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.

Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div. 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044. Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km.

62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.

Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749. New Zealand: PHILIPS NEW ZEALAND LTD., Components

Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. (02) 680200.

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD... Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772

Peru: CADESA, Av. Pardo y Aliaga No. 695, 6th Floor, San Isidro, LIMA 27, Tel. (014) 707080. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong

Tamo, P.O. Box 911, Makati Comm. Centre

MAKATI-RIZAL 3116, Tel. (02) 868951 to 59. **Portugal:** PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 6831 21.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 35 02 000.

Spain: MINIWATT S.A., Balmes 22, 08007 BARCELONA, Tel. (03) 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM, Tel. (08) 7821 000. Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 4882211.

Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 71 20 500. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD.,

283 Silom Road, P.O. Box 961, BANGKOK, Tel (02) 233-6330-9

Turkey: TÜRK PHILIPS TICARET A.S., Components Department, Inönü Cad., No. 78-80, 80090 Ayazpasa ISTANBUL, Tel. (01) 1435910.

United Kingdom: PHILIPS COMPONENTS Ltd., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 580 6633.

United States: AMPEREX ELECTRONIC CORP., 230 Duffy Avenue, P.O. Box 560, HICKSVILLE, L.I.N.Y. 11802, Tel (516) 931-6200 (Active Devices & Materials) AMPEREX SALES CORP.,

Providence Pike, SLATERSVILLE, R.I. 02876,

Tel. (401) 762-9000. (Colour picture tubes - Monochrome & Colour display tubes) PHILIPS DISPLAY COMPONENTS, 50 Johnston St., SENECA FALLS, N.Y. 13148, Tel. (315) 568-5881 IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000. (Passive & Electromech. Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404, Tel. (305) 881-3200.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 985395.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Components Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

© Philips Export B.V. 1988

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

Date of release

9398 149 20011

Philips Components

PHILIPS